Analytical Solutions for Generalized Stochastic HSC-KdV Equations with Variable Coefficients Using Hermite Transform and F-Expansion Method
Abstract
1. Introduction
2. SPDEs with N-GP
- (a)
- ;
- (b)
- .
- (a)
- (Commutative law);
- (b)
- (Associative law);
- (c)
- (Distributive law).
3. Exact Traveling Wave Solutions of Equation (1)
4. Exact STWSs of HSC-KdV
5. N-GWN Functional Solutions of Equation (1)
- N-GWN Functional Solutions of JEF Type:
- N-GWN Functional Solutions of Trigonometric Type:
- N-GWN Functional Solutions of Hyperbolic Type:
6. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols
Abbreviation | Definition |
Non-Gaussian probability measure | |
The space of square integrable functions | |
The space of generalized functions, | |
The space of test functions, | |
The Kondratiev space of stochastic distributions constructed upon Gaussian measures |
Appendix A. The ODE and JEFs
P | Q | R | |
1 | |||
1 | |||
1 | |||
Appendix B. The JEFs Degenerate into Trigonometric Functions When m→0
Appendix C. The JEFs Degenerate into Hyperbolic Functions When m→1
References
- Berezansky, Y.M. A connection between the theory of hypergroups and white noise analysis. Rep. Math. Phys. 1995, 36, 215–234. [Google Scholar] [CrossRef]
- Ghany, H.A. Exact solutions for stochastic generalized Hirota-Satsuma coupled KdV equations. Chin. J. Phys. 2011, 49, 926–940. [Google Scholar]
- Ghany, H.A.; Elagan, S.K.; Hyder, A. Exact travelling wave solutions for stochastic fractional Hirota-Satsuma coupled KdV equations. Chin. J. Phys. 2015, 53, 153–166. [Google Scholar]
- Hyder, A.; Zakarya, M. Non-Gaussian Wick calculus based on hypercomplex systems. Int. J. Pure Appl. Math. 2016, 109, 539–556. [Google Scholar]
- Ali, A.T.; Khater, M.M.; Attia, R.A.; Abdel-Aty, A.H.; Lu, D. Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system. Chaos Solitons Fractals 2020, 131, 109473. [Google Scholar]
- Bekir, A. On traveling wave solutions to combined KdV–mKdV equation and modified Burgers–KdV equation. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1038–1042. [Google Scholar]
- Drazin, P.G.; Johnson, R.S. Soliton: An Introduction; Cambridge Texts in Applied Mathematics; Cambridge University Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Abbasbandy, S. The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation. Phys. Lett. A 2007, 361, 478–483. [Google Scholar]
- Borhanifar, A.; Reza, A. Exact solutions for non-linear Schrodinger equations by differential transformation method. J. Appl. Math. Comput. 2011, 35, 37–51. [Google Scholar]
- Tari, A.; Rahimi, M.Y.; Shahmorad, S.; Talati, F. Solving a class of two dimensional linear and nonlinear Volterra integral equations by the differential transform method. J. Comput. Appl. Math. 2009, 228, 70–76. [Google Scholar] [CrossRef]
- Fan, E.G. Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation. Phys. Lett. A 2001, 282, 18–22. [Google Scholar]
- Wazwaz, A.M. Partial Differential Equations and Solitary Waves Theory; Springer: Beijing, China, 2009. [Google Scholar]
- Eleuch, H.; Bennaceur, R. An optical soliton pair among absorbing three-level atoms. J. Opt. A Pure Appl. Opt. 2003, 58, 528–533. [Google Scholar]
- Eleuch, H.; Nessib, N.B.; Bennaceur, R. Quantum Model of emission in weakly non ideal plasma. Eur. Phys. J. D 2004, 29, 391–395. [Google Scholar] [CrossRef]
- Yan, Z. The extended Jacobi elliptic function expansion method and its application in the generalized Hirota-Satsuma coupled KdV system. Chaos Solitons Fractals 2003, 15, 575–583. [Google Scholar]
- Zhou, Y.; Wang, M.; Wang, Y. Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 2003, 308, 31–36. [Google Scholar] [CrossRef]
- Wadati, M. Stochastic Korteweg-de Vries equation. J. Phys. Soc. Jpn. 1983, 52, 2642–2648. [Google Scholar] [CrossRef]
- de Bouard, A.; Debussche, A. On the stochastic Korteweg-de Vries equation. J. Funct. Anal. 1998, 154, 215–251. [Google Scholar]
- de Bouard, A.; Debussche, A. White noise driven Korteweg-de Vries equation. J. Funct. Anal. 1999, 169, 532–558. [Google Scholar]
- Debussche, A.; Printems, J. Numerical simulation of the stochastic Korteweg-de Vries equation. Phys. Nonlinear Phenom. 1999, 134, 200–226. [Google Scholar]
- Debussche, A.; Printems, J. Effect of a localized random forcing term on the Korteweg-de Vries equation. J. Comput. Anal. Appl. 2001, 3, 183–206. [Google Scholar] [CrossRef]
- Ghany, H.A.; Hyder, A. Local and global well-posedness of stochastic Zakharov-Kuznetsov equation. J. Comput. Anal. Appl. 2013, 15, 1332–1343. [Google Scholar]
- Lindstrøm, T.; Øksendal, B.; Ubøe, J. Stochastic differential equations involving positive noise. In Stochastic Analysis; Barlow, M., Bingham, N., Eds.; Cambridge University Press: Cambridge, MA, USA, 1991; pp. 261–303. [Google Scholar]
- Ghany, H.A. Exact solutions for stochastic fractional Zakharov-Kuznetsov equations. Chin. J. Phys. 2013, 51, 875–881. [Google Scholar]
- Ghany, H.A.; Zakarya, M. Exact travelling wave solutions for Wick-type stochastic Schamel-KdV equations using F-expansion method. Phys. Res. Int. 2014, 2014, 937345. [Google Scholar]
- Ghany, H.A.; Hyder, A. White noise functional solutions for the Wick-type two-dimensional stochastic Zakharov-Kuznetsov equations. Int. Rev. Phys. 2012, 6, 153–157. [Google Scholar]
- Ghany, H.A.; Zakarya, M. Generalized solutions of Wick-type stochastic KdV-Burgers equations using Exp-function method. Int. Phys. 2014, 8, 38–46. [Google Scholar]
- Ghany, H.A.; Bab, A.S.O.E.; Zabal, A.M.; Hyder, A. The fractional coupled KdV equations: Exact solutions and white noise functional approach. Chin. Phys. B 2013, 22, 080501. [Google Scholar] [CrossRef]
- Ghany, H.A.; Zakarya, M. Exact solutions for Wick-type stochastic coupled KdV equations. Glob. J. Sci. Front. Res. Math. Decis. Sci. 2014, 14, 57–71. [Google Scholar]
- Holden, H.; Øsendal, B.; Ubøe, J.; Zhang, T. Stochastic Partial Differential Equations; Springer Science+Business Media, LLC: Cham, Switzerland, 2010. [Google Scholar]
- Okb El Bab, A.S.; Ghany, H.A.; Zakarya, M. A construction of non-Gaussian white noise analysis using the theory of hypercomplex systems. Glob. J. Sci. Front. Res. Math. Decis. Sci. 2016, 16, 11–25. [Google Scholar]
- Wick, G.C. The evaluation of the collinear matrix. Phys. Rev. 1950, 80, 268–272. [Google Scholar]
- Hida, T.; Ikeda, N. Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral. In Proc. Fifth Berkeley Symp. Math. Stat. Probab. II; University of California Press: Berkeley, CA, USA, 1965; pp. 117–143. [Google Scholar]
- Dobrushin, R.L.; Minlos, R.L. Polynomials in linear random functions. Russ. Math. Surv. 1977, 32, 71–127. [Google Scholar] [CrossRef]
- Ghany, H.A.; Hyder, A.; Zakarya, M. Non-Gaussian White Noise Functional Solutions of χ-Wick type Stochastic KdV Equations. Int. J. Appl. Math. Inf. Sci. 2017, 11, 915–924. [Google Scholar]
- Zakarya, M. Hypercomplex Systems and Non-Gaussian Stochastic Solutions of χ-Wick-Type (3+1)—Dimensional Modified BBM Equations Using the Generalized Modified Tanh-Coth Method. Therm. Sci. J. 2020, 24, 209–223. [Google Scholar]
- Zakarya, M.; Abd-Rabo, M.A.; AlNemer, G. Hypercomplex Systems and Non-Gaussian Stochastic Solutions with Some Numerical Simulation of χ-Wick-Type (2 + 1)-D C-KdV Equations. Axioms 2022, 11, 658. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakarya, M.; Al-Shehri, N.Z.; Ali, H.M.; Abd-Rabo, M.A.; Rezk, H.M. Analytical Solutions for Generalized Stochastic HSC-KdV Equations with Variable Coefficients Using Hermite Transform and F-Expansion Method. Axioms 2025, 14, 624. https://doi.org/10.3390/axioms14080624
Zakarya M, Al-Shehri NZ, Ali HM, Abd-Rabo MA, Rezk HM. Analytical Solutions for Generalized Stochastic HSC-KdV Equations with Variable Coefficients Using Hermite Transform and F-Expansion Method. Axioms. 2025; 14(8):624. https://doi.org/10.3390/axioms14080624
Chicago/Turabian StyleZakarya, Mohammed, Nadiah Zafer Al-Shehri, Hegagi M. Ali, Mahmoud A. Abd-Rabo, and Haytham M. Rezk. 2025. "Analytical Solutions for Generalized Stochastic HSC-KdV Equations with Variable Coefficients Using Hermite Transform and F-Expansion Method" Axioms 14, no. 8: 624. https://doi.org/10.3390/axioms14080624
APA StyleZakarya, M., Al-Shehri, N. Z., Ali, H. M., Abd-Rabo, M. A., & Rezk, H. M. (2025). Analytical Solutions for Generalized Stochastic HSC-KdV Equations with Variable Coefficients Using Hermite Transform and F-Expansion Method. Axioms, 14(8), 624. https://doi.org/10.3390/axioms14080624