Next Article in Journal
k-Almost Newton-Conformal Ricci Solitons on Hypersurfaces Within Golden Riemannian Manifolds with Constant Golden Sectional Curvature
Previous Article in Journal
A New Cluster Validity Index Based on Local Density of Data Points
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Classification of Lattices of Determinant 4 and Rank 5

1
College of Mathematics, Guangdong University of Education, Guangzhou 510310, China
2
School of Mathematics and Statistics, Nantong University, Nantong 226019, China
3
School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang 524048, China
*
Authors to whom correspondence should be addressed.
Axioms 2025, 14(8), 577; https://doi.org/10.3390/axioms14080577
Submission received: 19 June 2025 / Revised: 18 July 2025 / Accepted: 23 July 2025 / Published: 25 July 2025

Abstract

In this paper, we give the classification of the positive definite lattices with determinant 4 and rank 5.
MSC:
20D10; 03G10

1. Introduction

A lattice is a free Abelian group of finite rank with a rational valued symmetric bilinear form. We think of it as embedded in a rational vector space with the same basis. A lattice is rectangular if it has an orthogonal basis. The dual of a lattice M is denoted by M = { x V | ( x , y ) Z ,   f o r a l l y M } . The determinant of a lattice is det ( G ) , where G is any Gram matrix, meaning the square matrix ( ( x i , x j ) ) of size r a n k ( M ) where { x i } is any basis. Now assume that M is integral, i.e., ( x , y ) are integers for all x , y M . We call M even if ( x , x ) is an even integer, for all x M . If M is not even, it is odd. The discriminant group of M is D ( M ) = M / M . We call M unimodular if det ( M ) = 1 or 1 . When det ( M ) 0 , | D ( M ) | = | det ( M ) | . We say that M is positive definite if ( x , x ) > 0 for all x M , x 0 .
Lattice theory, as a fundamental discipline in modern mathematics, provides essential tools for studying discrete structures with profound applications across number theory, geometry, combinatorics, representation theory, and Lie theory [1]. Integral lattices play particularly important roles in classifying finite groups [2,3], constructing error-correcting codes [4,5], and Optimizing Algorithms [6]. The classification of positive definite lattices by rank and determinant thus represents a core problem with both theoretical significance and practical applications.
As to lattices’ classification, most research works are about unimodular lattices. There are some research works on the even unimodular lattices (see [7,8,9]). Mordell gave the classification of all positive definite rank 8 unimodular lattices in [10]. His proof depends on two deep theorems on quadratic forms. R.L. Griess Jr. classified these lattices by using only elementary techniques in [11]. Then he classified positive definite lattices of rank at most 7 and determinant 2, rank at most 6 and determinant 3, and rank at most 4 and determinant 4 in his book [12]. And Borcherds, R.E. also studied the positive defined lattices in [13]. He gave the classification of the 665 25-dimensional unimodular positive definite lattices and the 121 even 25-dimensional positive definite lattices of determinant 2.
Despite these advances, classifications for moderate ranks with small determinants (>1) remain incomplete. Lattices of rank 5 and determinant 4 occupy a particularly important gap; they represent the lowest rank where unimodularity constraints no longer apply, yet avoid the combinatorial explosion of higher dimensions. Their complete classification would bridge classical low-dimensional results and uncharted territory in lattice theory. Furthermore, such lattices encode solutions to challenging Diophantine equations [14] and optimize designs in communication networks [15], highlighting their multidisciplinary relevance.
In this paper, we try to give the classification of the positive definite integral lattices with determinant 4 and rank 5 by employing the local analysis approach [16].

2. Preliminaries

In this section, we give some notations and lemmas, which are useful for the later use and could be found in [12].
Definition 1
([12] pp. 33, 34). Let L : = Z n + 1 = { ( x 0 , x 1 , , x n ) | x i Z } and v = ( 1 , 1 , , 1 ) L . The lattice A n is defined as the annihilator of Z v in L, i.e., A n : = a n n L ( Z v ) = { x L | ( x , v ) = 0 for all v Z v } = a n n L ( v ) , where ( · , · ) denotes the bilinear form on L.
Further:
D n : = { ( x 1 , , x n ) Z n | x i 2 Z } ;
E 8 : = D 8 + Z 1 2 ( 1 , 1 , , 1 ) ;
The E 7 lattice is the annihilator in E 8 of any A 1 sublattice;
The E 6 lattice is the annihilator in E 8 of any A 2 sublattice.
Lemma 1
([12] p. 17, Theorem 2.3.3). Let L be a lattice, and M a sublattice of L of finite index | L : M | . Then det ( L ) | L : M | 2 = det ( M ) .
Lemma 2
([12] p. 55, Theorem 5.2.1). Let L be a positive definite integral lattice of rank no more than 8 and determinant 1. Then L Z n or L E 8 .
Lemma 3
([12] p. 55, Theorem 5.2.2). Let L be a positive definite integral lattice of rank 7 and determinant 2. Then L is rectangular or L E 7 .
Lemma 4
([12] p. 56, Theorem 5.2.3). Let L be a positive definite integral lattice of rank 6 and determinant 3. Then L is rectangular, or L A 2 Z 4 , or L E 6 .
Lemma 5
([12] p. 57, Lemma 5.3.1). Suppose that X is an integral lattice which has rank 4 and determinant 4. Then X is isometric to one of the following lattices:
(1) 2 Z Z 3 ;
(2) A 1 A 1 Z 2 ;
(3) A 3 Z ;
(4) D 4 .
Lemma 6
([12] p. 18, Theorem 2.4.1). Let L be a nonsingular integral lattice and M a sublattice which ia a direct summand of L. Then
(1) the natural map ψ : L M is onto.
(2) define π to be the composition of ψ and the quotient map M M / M , then we have K e r ( π ) = M + a n n L ( M ) and K e r ( π | L ) = M + a n n L ( M ) .
(3) π | L is surjective if | D ( L ) | and | D ( M ) | are relatively prime.
Lemma 7
([12] p. 49, Theorem 5.0.3). Let H ( n , d ) : = ( 4 3 ) n 1 2 · d 1 n and μ ( L ) : = m i n { | ( x , x ) | | x L , x 0 } . If L is a rational lattice of rank n, then μ ( L ) H ( n , | det ( L ) | ) .

3. Main Result

In the following, we classify the positive definite lattice which has rank 5 and determinant 4 on the basis of professor Griess’ result (Lemma 5).
Theorem 1.
Suppose that X is an positive definite lattice which has rank 5 and determinant 4. Then X is isometric to one of the following lattices:
(1) 2 Z Z 4 ;
(2) A 1 A 1 Z 3 ;
(3) A 3 Z 2 ;
(4) D 4 Z ;
(5) D 5 .
Proof. 
If X contains unit vector u 1 , then X = Z u 1 a n n X ( u 1 ) since the natural map X D ( Z u 1 ) is onto. So X is isometric to one of 2 Z Z 4 , A 1 A 1 Z 3 , A 3 Z 2 and D 4 Z by Lemma 5.
If there is no unit vector in X, then X has a root u since H ( 5 , 4 ) = 2.3458 and Lemma 7. Noting the natural map X D ( Z u ) , when X / ( Z u a n n X ( u ) ) 1 , we see that a n n X ( u ) has determinant 2 by Lemma 1. Thus a n n X ( u ) contains a vector of norm 1 by Lemma 3, a contradiction. So the natural map X D ( Z u ) is onto. Thus a n n X ( u ) ) is an integral lattice of rank 4 and determinant 8 by using Lemma 1 again. Since H ( 4 , 8 ) = 2.5893 , a n n X ( u ) ) contains a root v. Define P : = Z u Z v , Q : = a n n X ( P ) . Considering the natural map X D ( P ) , if | X : ( P Q ) | = 1 , then Q is of determinant 1 and has unit vector, a contradiction. So X / ( P Q ) 2 or 2 × 2 .
Case 1. X / ( P Q ) 2 .
Q is of determinant 4 and rank 3. Then by Lemma 5, we see Q A 3 . Set Q = S p a n { x , y , x } with ( x , x ) = ( y , y ) = ( z , z ) = 2 , ( x , z ) = 0 , ( x , y ) = ( y , z ) = 1 . The nontrivial coset of P Q contains an element of the form 1 2 ( e + f ) , where e s p a n { u , v } and f s p a n { x , y , z } . We may furthermore arrange for e = i u + j v , f = k x + l y + m z , where i , j , k , l , m { 0 , 1 } . For the norm of 1 2 ( e + f ) to be an integer and greater than 1, we see i 2 + j 2 + k 2 + l 2 + m 2 k l l m 0 ( mod 2 ) and ( i 2 + j 2 + k 2 + l 2 + m 2 k l l m ) / 2 > 1 . Then ( i , j , k , l , m ) = ( 1 , 1 , 1 , 0 , 1 ) . So X = s p a n { u , v , x , y , u + v + x + z 2 } , which is type (5) lattice in the theorem.
Case 2. X / ( P Q ) 2 × 2 .
Q is of determinant 16 and rank 3. Since H ( 3 , 16 ) = 3.35978 , μ ( Q ) = 2 or 3.
Case 2.1. μ ( Q ) = 2 .
There is a root w in Q. Define P 1 : = Z u Z v Z w , Q 1 : = a n n X ( P 1 ) . P 1 is a direct summand of X. In fact, if P 1 is contained in P , which is a direct summand, and | P : P 1 | = t . Then det ( P ) = det ( P 1 ) t 2 = 2 2 · 3 t 2 = 2 . Then P is rectangular by Lemma 3. So P has unit vector, a contradiction.
Considering the natural map X D ( P 1 ) , X / ( P 1 Q 1 ) 2 × 2 × 2 . If | X / ( P 1 Q 1 ) | = 1 , then 8 | 4 , a contradiction. If X / ( P 1 Q 1 ) 2 , then Q 1 is of rank 2 and determinant 2. Q 1 has a unit vector, a contradiction. If X / ( P 1 Q 1 ) 2 × 2 × 2 , then the image of X in D ( Q 1 ) is 2 × 2 × 2 , which contradicts r a n k ( Q 1 ) = 2 . So X / ( P 1 Q 1 ) 2 × 2 . Then Q 1 is of determinant 8 and rank 2. And the image of X in D ( Q 1 ) is 2 × 2 . So D ( Q 1 ) 2 × 4 . For any g Q 1 , 1 2 g Q . Then Q 1 = 2 K , where K is an integral lattice of rank 2 and determinant 2. Therefore, Q 1 has a rectangular basis x , y , with respective norms 2 , 4 .
The nontrivial coset of P 1 Q 1 contains an element of the form 1 2 ( e + f ) , where e s p a n { u , v , w } and f s p a n { x , y } . We may furthermore arrange for e = i u + j v + k w , f = l x + m y , where i , j , k , l , m { 0 , 1 } . For the norm of 1 2 ( e + f ) to be an integer and greater than 1, we see i 2 + j 2 + k 2 + l 2 + 2 m 2 0 ( mod 2 ) and ( i 2 + j 2 + k 2 + l 2 + 2 m 2 ) / 2 > 1 . Then ( i , j , k , l , m ) { ( 0 , 0 , 1 , 1 , 1 ) , ( 0 , 1 , 0 , 1 , 1 ) , ( 0 , 1 , 1 , 0 , 1 ) , ( 1 , 0 , 0 , 1 , 1 ) , ( 1 , 0 , 1 , 0 , 1 ) , ( 1 , 1 , 0 , 0 , 1 ) ,
( 1 , 1 , 1 , 1 , 0 ) , ( 1 , 1 , 1 , 1 , 1 ) } . So X is one of X 1 = s p a n { u , v , w , x , y , w + x + y 2 , u + v + y 2 } ,
X 2 = s p a n { u , v , w , x , y , v + x + y 2 , u + w + y 2 } , or X 3 = s p a n { u , v , w , x , y , v + w + y 2 , u + x + y 2 } . X 1 and X 2 are isometric by the isometry defined by u u , v w , w v , x x , y y . And X 2 and X 3 are also isometric by the isometry defined by u u , v v , w x , x w , y y . So in this case 2.1, X is isometric to s p a n { u , v , w , w + x + y 2 , u + v + y 2 } , which is type (5) lattice in the theorem.
Case 2.2. μ ( Q ) = 3 .
There is a vector w of norm 3 in Q. Define P 1 : = Z u Z v Z w , Q 1 : = a n n X ( P 1 ) . P 1 is a direct summand of X. In fact, if P 1 is contained in P , which is a direct summand, and | P : P 1 | = t . Then det ( P ) = det ( P 1 ) t 2 = 2 2 · 3 t 2 = 3 . Then P is rectangular or A 2 Z by Lemma 4. So P has unit vector, a contradiction.
Considering the natural map X D ( P 1 ) , X / ( P 1 Q 1 ) 2 × 2 × 3 . Since det ( X ) | X / ( P 1 Q 1 ) | 2 = det ( P 1 ) det ( Q 1 ) and | X / ( P 1 Q 1 ) | is an integer, we see X / ( P 1 Q 1 ) 3 , 2 × 3 or 2 × 2 × 3 .
Case 2.2.1. X / ( P 1 Q 1 ) 3 .
If X / ( P 1 Q 1 ) 3 , then Q 1 is of rank 2 and determinant 3. Q 1 has unit vector, a contradiction.
Case 2.2.2. X / ( P 1 Q 1 ) 2 × 3 .
So X / ( P 1 Q 1 ) 2 × 3 . Then Q 1 is of determinant 12 and rank 2. Since H ( 2 , 12 ) = 4 , μ ( Q 1 ) = 3 or 4.
Case 2.2.2.1. μ ( Q 1 ) = 3 .
Set x Q 1 is of norm 3. Considering the natural map Q 1 D ( Z x ) , Q 1 / ( Z x a n n Q 1 ( x ) ) 3 . Then we claim that Q 1 has rectangular basis x , y with respective norm 3 , 4 . In fact, when Q 1 / ( Z x a n n Q 1 ( x ) ) 1 , it is obvious. When Q 1 / ( Z x a n n Q 1 ( x ) ) 3 , a n n Q 1 ( x ) = Z z is of determinant 36. A nontrivial coset of Z x a n n Q 1 ( x ) ) contains an element of the form 1 3 ( e + f ) , where e s p a n { x } and f s p a n { z } . We may furthermore arrange for e = i x , f = j z , where i , j { 0 , 1 , 2 } . For the norm of 1 3 ( e + f ) to be an integer and greater than 2, we see 3 i 2 + 36 j 2 0 ( mod 9 ) and ( 3 i 2 + 36 j 2 ) / 9 > 2 . Then ( i , j ) = ( 0 , 1 ) , ( 0 , 2 ) . So Q 1 = s p a n { x , z , z 3 } = s p a n { x , z 3 } . Set y : = z 3 . Then Q 1 has rectangular basis x , y with respective norm 3 , 4 .
A nontrivial coset of P 1 Q 1 contains an element g of the form 1 6 ( e + f ) , where e s p a n { u , v , w } and f s p a n { x , y } . We may furthermore arrange for e = i u + j v + k w , f = l x + m y , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } . For the norm of 1 2 ( e + f ) to be an integer and greater than 1, we see 2 i 2 + 2 j 2 + 3 k 2 + 3 l 2 + 4 m 2 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 3 l 2 + 4 m 2 ) / 36 > 1 .
Assume that X / ( P 1 Q 1 ) = g + ( P 1 Q 1 ) , which is an Abelian group of order 6. Then for any t { 1 , 2 , 3 , 4 , 5 } , t g + ( P 1 Q 1 ) is also a nontrivial coset of P 1 Q 1 and contains an element g = 1 6 ( i u + j v + k w + l x + m y ) , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } and i t i ( mod 6 ) , j t j ( mod 6 ) , k t k ( mod 6 ) , l t l ( mod 6 ) , m t m ( mod 6 ) . So 2 i 2 + 2 j 2 + 3 k 2 + 3 l 2 + 4 m 2 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 3 l 2 + 4 m 2 ) / 36 > 1 .
Thus we get ( i , j , k , l , m ) {   ( 0 , 5 , 3 , 1 , 5 ) , ( 0 , 1 , 3 , 5 , 1 ) , ( 0 , 5 , 1 , 3 , 5 ) , ( 0 , 1 , 5 , 3 , 1 ) , ( 5 , 0 , 1 , 3 , 5 ) , ( 1 , 0 , 5 , 3 , 1 ) , ( 5 , 0 , 3 , 1 , 5 ) , ( 1 , 0 , 3 , 5 , 1 ) ,   ( 3 , 4 , 3 , 5 , 4 ) , ( 3 , 2 , 3 , 1 , 2 ) ,
( 3 , 2 , 1 , 3 , 2 ) , ( 3 , 4 , 5 , 3 , 4 ) , ( 2 , 3 , 1 , 3 , 2 ) , ( 4 , 3 , 5 , 3 , 4 ) , ( 4 , 3 , 3 , 5 , 4 ) , ( 2 , 3 , 3 , 1 , 2 ) } . So X is one of
X 1 = s p a n { u , v , w , x , y , 5 v + 3 w + x + 5 y 6 } , X 2 = s p a n { u , v , w , x , y , 5 v + w + 3 x + 5 y 6 } ,
X 3 = s p a n { u , v , w , x , y , 5 u + w + 3 x + 5 y 6 } , X 4 = s p a n { u , v , w , x , y , 5 u + 3 w + x + 5 y 6 } ,
X 5 = s p a n { u , v , w , x , y , 3 u + 2 v + 3 w + x + 2 y 6 } , X 6 = s p a n { u , v , w , x , y , 3 u + 2 v + w + 3 x + 2 y 6 } ,
X 7 = s p a n { u , v , w , x , y , 2 u + 3 v + w + 3 x + 2 y 6 } and X 8 = s p a n { u , v , w , x , y , 2 u + 3 v + 3 w + x + 2 y 6 } .
Considering the isometries defined by u u , v v , w x , x w , y y and u v , v u , w w , x x , y y , we see that X 1 , X 2 , X 3 and X 4 are isometric and X 5 , X 6 , X 7 and X 8 are isometric. So X is isometric to s p a n { u , v , w , y , 5 v + 3 w + x + 5 y 6 } or s p a n { u , v , w , y , 3 u + 2 v + 3 w + x + 2 y 6 } . But ( v , 5 v + 3 w + x + 5 y 6 ) = 5 3 and ( y , 3 u + 2 v + 3 w + x + 2 y 6 ) = 4 3 , which are contradictory to the fact that X is integral.
Case 2.2.2.2. μ ( Q 1 ) = 4 .
Set x Q 1 is of norm 4. We claim that Q 1 s p a n { x , y | ( x , x ) = ( y , y ) = 4 , ( x , y ) = 2 } .
In fact, considering the natural map Q 1 D ( Z x ) , Q 1 / ( Z x a n n Q 1 ( x ) ) 1 , 2 , or 4. If Q 1 / ( Z x a n n Q 1 ( x ) ) 1 , then Q 1 has a vector of norm 3, which contradict μ ( Q 1 ) = 4 . When Q 1 / ( Z x a n n Q 1 ( x ) ) 2 , a n n Q 1 ( x ) = Z z is of determinant 12. A nontrivial coset of Z x a n n Q 1 ( x ) ) contains an element of the form 1 2 ( e + f ) , where e s p a n { x } and f s p a n { z } . We may furthermore arrange for e = i x , f = j z , where i , j { 0 , 1 } . For the norm of 1 2 ( e + f ) to be an integer and greater than 3, we see 4 i 2 + 12 j 2 0 ( mod 4 ) and ( 4 i 2 + 12 j 2 ) / 4 > 3 . Then ( i , j ) = ( 1 , 1 ) . So Q 1 is isometric to s p a n { x , z , x + z 2 } s p a n { x , y | ( x , x ) = ( y , y ) = 4 , ( x , y ) = 2 } . When Q 1 / ( Z x a n n Q 1 ( x ) ) 4 , a n n Q 1 ( x ) = Z z is of determinant 48. A nontrivial coset of Z x a n n Q 1 ( x ) ) contains an element of the form 1 2 ( e + f ) , where e s p a n { x } and f s p a n { z } . We may furthermore arrange for e = i x , f = j z , where i , j { 0 , 1 , 2 , 3 } . For the norm of 1 2 ( e + f ) to be an integer and greater than 3, we see 4 i 2 + 48 j 2 0 ( mod 16 ) and ( 4 i 2 + 48 j 2 ) / 16 > 3 . Then ( i , j ) = ( 0 , 2 ) or ( 0 , 3 ) . This is incompatible with Q 1 / ( Z x a n n Q 1 ( x ) ) 4 . So Q 1 s p a n { x , y | ( x , x ) = ( y , y ) = 4 , ( x , y ) = 2 } .
A nontrivial coset of P 1 Q 1 contains an element g of the form 1 6 ( e + f ) , where e s p a n { u , v , w } and f s p a n { x , y } . We may furthermore arrange for e = i u + j v + k w , f = l x + m y , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } . For the norm of 1 2 ( e + f ) to be an integer and greater than 1, we see 2 i 2 + 2 j 2 + 3 k 2 + 4 l 2 + 4 m 2 + 4 l m 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 4 l 2 + 4 m 2 + 4 l m ) / 36 > 1 .
Assume that X / ( P 1 Q 1 ) = g + ( P 1 Q 1 ) , which is an Abelian group of order 6. Then for any t { 1 , 2 , 3 , 4 , 5 } , t g + ( P 1 Q 1 ) is also a nontrivial coset of P 1 Q 1 and contains an element g = 1 6 ( i u + j v + k w + l x + m y ) , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } and i t i ( mod 6 ) , j t j ( mod 6 ) , k t k ( mod 6 ) , l t l ( mod 6 ) , m t m ( mod 6 ) . So 2 i 2 + 2 j 2 + 3 k 2 + 4 l 2 + 4 m 2 + 4 l m 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 4 l 2 + 4 m 2 + 4 l m ) / 36 > 1 .
But there is no ( i , j , k , l , m ) such that the above conditions are met. So in Case 2.2.2, there is no lattice of rank 5 and determinant 4.
Case 2.2.3. X / ( P 1 Q 1 ) 2 × 2 × 3 .
In this case, we see det Q 1 = 48 and the image of X in D ( Q 1 ) is 2 × 6 . Then the Sylow 2-subgroup of D ( Q 1 ) has exponent < 16 . So Q 1 : = 2 K , where K has rank 2 and determinant 12. Since μ ( Q 1 ) 3 and H ( 2 , 12 ) = 4 , we see μ ( K ) = 2 , 3 or 4.
If μ ( K ) = 3 , 4 , then K s p a n { x , y | ( x , x ) = ( y , y ) = 4 , ( x , y ) = 2 } or s p a n { x , y | ( x , x ) = 3 , ( y , y ) = 4 , ( x , y ) = 0 } by the same analysis in the case 2.2.2.
If μ ( K ) = 2 , set x K is of norm 2. We claim that K s p a n { x , y | ( x , x ) = 2 , ( y , y ) = 6 , ( x , y ) = 0 } .
In fact, considering the natural map K D ( Z x ) , K / ( Z x a n n K ( x ) ) 1 , 2 . If K / ( Z x a n n K ( x ) ) 1 , then K s p a n { x , y | ( x , x ) = 2 , ( y , y ) = 6 , ( x , y ) = 0 } . When K / ( Z x a n n K ( x ) ) 2 , a n n K ( x ) = Z z is of determinant 24. A nontrivial coset of Z x a n n K ( x ) ) contains an element of the form 1 2 ( e + f ) , where e s p a n { x } and f s p a n { z } . We may furthermore arrange for e = i x , f = j z , where i , j { 0 , 1 } . For the norm of 1 2 ( e + f ) to be an integer and greater than 1, we see 2 i 2 + 24 j 2 0 ( mod 4 ) and ( 2 i 2 + 24 j 2 ) / 4 > 1 . Then ( i , j ) = ( 0 , 1 ) . So K is isometric to s p a n { x , z 2 } s p a n { x , y | ( x , x ) = 2 , ( y , y ) = 6 , ( x , y ) = 0 } .
So Q 1 s p a n { x , y | ( x , x ) = 4 , ( y , y ) = 12 , ( x , y ) = 0 } , s p a n { x , y | ( x , x ) = 6 , ( y , y ) = 8 , ( x , y ) = 0 } or s p a n { x , y | ( x , x ) = 8 , ( y , y ) = 8 , ( x , y ) = 4 } .
Case 2.2.3.1. Q 1 s p a n { x , y | ( x , x ) = 4 , ( y , y ) = 12 , ( x , y ) = 0 } .
A nontrivial coset of P 1 Q 1 contains an element g of the form 1 6 ( e + f ) , where e s p a n { u , v , w } and f s p a n { x , y } . We may furthermore arrange for e = i u + j v + k w , f = l x + m y , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } . For the norm of 1 6 ( e + f ) to be an integer and greater than 1, we see 2 i 2 + 2 j 2 + 3 k 2 + 4 l 2 + 12 m 2 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 4 l 2 + 12 m 2 ) / 36 > 1 .
Assume that g + ( P 1 Q 1 ) is an Abelian subgroup of order 6 of X / ( P 1 Q 1 ) . Then for any t { 1 , 2 , 3 , 4 , 5 } , t g + ( P 1 Q 1 ) is also a nontrivial coset of P 1 Q 1 and contains an element g = 1 6 ( i u + j v + k w + l x + m y ) , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } and i t i ( mod 6 ) , j t j ( mod 6 ) , k t k ( mod 6 ) , l t l ( mod 6 ) , m t m ( mod 6 ) . So 2 i 2 + 2 j 2 + 3 k 2 + 4 l 2 + 12 m 2 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 4 l 2 + 12 m 2 ) / 36 > 1 . Then ( i , j , k , l , m ) A : = {   ( 0 , 2 , 0 , 2 , 5 ) , ( 0 , 2 , 4 , 2 , 3 ) , ( 0 , 4 , 0 , 4 , 1 ) , ( 0 , 4 , 2 , 4 , 3 ) , ( 1 , 3 , 0 , 1 , 2 ) ,
( 1 , 3 , 0 , 1 , 4 ) , ( 1 , 3 , 0 , 1 , 5 ) , ( 1 , 3 , 2 , 1 , 3 ) , ( 2 , 0 , 0 , 2 , 5 ) , ( 2 , 0 , 4 , 2 , 3 ) ,
( 3 , 1 , 0 , 1 , 2 ) , ( 3 , 1 , 0 , 1 , 4 ) , ( 3 , 1 , 0 , 1 , 5 ) , ( 3 , 1 , 2 , 1 , 3 ) , ( 3 , 5 , 0 , 5 , 1 ) ,
( 3 , 5 , 0 , 5 , 2 ) , ( 3 , 5 , 0 , 5 , 4 ) , ( 3 , 5 , 4 , 5 , 3 ) , ( 4 , 0 , 0 , 4 , 1 ) , ( 4 , 0 , 2 , 4 , 3 ) ,
( 5 , 3 , 0 , 5 , 1 ) , ( 5 , 3 , 0 , 5 , 2 ) , ( 5 , 3 , 0 , 5 , 4 ) , ( 5 , 3 , 4 , 5 , 3 ) }
Since X is integral, we see ( u , g ) , ( v , g ) , ( w , g ) , ( x , g ) are integers and then 3 | i , 3 | j , 2 | k and 3 | l . Thus there is no element in A such that this condition is met, which is a contradiction.
Case 2.2.3.2. Q 1 s p a n { x , y | ( x , x ) = 6 , ( y , y ) = 8 , ( x , y ) = 0 } .
A nontrivial coset of P 1 Q 1 contains an element g of the form 1 6 ( e + f ) , where e s p a n { u , v , w } and f s p a n { x , y } . We may furthermore arrange for e = i u + j v + k w , f = l x + m y , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } . For the norm of 1 6 ( e + f ) to be an integer and greater than 1, we see 2 i 2 + 2 j 2 + 3 k 2 + 6 l 2 + 8 m 2 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 6 l 2 + 8 m 2 ) / 36 > 1 .
Assume that g + ( P 1 Q 1 ) is an Abelian subgroup of order 6 of X / ( P 1 Q 1 ) . Then for any t { 1 , 2 , 3 , 4 , 5 } , t g + ( P 1 Q 1 ) is also a nontrivial coset of P 1 Q 1 and contains an element g = 1 6 ( i u + j v + k w + l x + m y ) , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } and i t i ( mod 6 ) , j t j ( mod 6 ) , k t k ( mod 6 ) , l t l ( mod 6 ) , m t m ( mod 6 ) . So 2 i 2 + 2 j 2 + 3 k 2 + 6 l 2 + 8 m 2 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 6 l 2 + 8 m 2 ) / 36 > 1 . Then ( i , j , k , l , m ) A : = {   ( 0 , 0 , 2 , 4 , 3 ) , ( 0 , 0 , 4 , 2 , 3 ) , ( 0 , 3 , 2 , 1 , 3 ) , ( 0 , 3 , 4 , 5 , 3 ) , ( 1 , 1 , 0 , 4 , 1 ) ,
( 3 , 0 , 2 , 1 , 3 ) , ( 3 , 0 , 4 , 5 , 3 ) , ( 3 , 3 , 2 , 4 , 3 ) , ( 3 , 3 , 4 , 2 , 3 ) , ( 5 , 5 , 0 , 2 , 5 ) }
Since X is integral, we see ( u , g ) , ( v , g ) , ( w , g ) , ( x , g ) are integers and then 3 | i , 3 | j , 2 | k and 3 | m . So ( i , j , k , l , m ) {   ( 0 , 0 , 2 , 4 , 3 ) , ( 0 , 0 , 4 , 2 , 3 ) , ( 0 , 3 , 2 , 1 , 3 ) , ( 0 , 3 , 4 , 5 , 3 ) ,
( 3 , 0 , 2 , 1 , 3 ) , ( 3 , 0 , 4 , 5 , 3 ) , ( 3 , 3 , 2 , 4 , 3 ) , ( 3 , 3 , 4 , 2 , 3 ) } .
Furthermore, if g + ( P 1 Q 1 ) is an Abelian subgroup of order 2 of X / ( P 1 Q 1 ) , then ( i , j , k , l , m ) {   ( 0 , 0 , 0 , 0 , 3 ) , ( 0 , 3 , 0 , 3 , 3 ) , ( 3 , 0 , 0 , 3 , 3 ) , ( 3 , 3 , 0 , 0 , 3 ) } . Thus there is no Sylow 2-group in X / ( P 1 Q 1 ) , a contradiction.
Case 2.2.3.3. Q 1 s p a n { x , y | ( x , x ) = 8 , ( y , y ) = 8 , ( x , y ) = 4 } .
A nontrivial coset of P 1 Q 1 contains an element g of the form 1 6 ( e + f ) , where e s p a n { u , v , w } and f s p a n { x , y } . We may furthermore arrange for e = i u + j v + k w , f = l x + m y , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } . For the norm of 1 6 ( e + f ) to be an integer and greater than 1, we see 2 i 2 + 2 j 2 + 3 k 2 + 8 l 2 + 8 m 2 + 8 l m 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 8 l 2 + 8 m 2 + 8 l m ) / 36 > 1 .
Assume that g + ( P 1 Q 1 ) is an Abelian subgroup of order 6 of X / ( P 1 Q 1 ) . Then for any t { 1 , 2 , 3 , 4 , 5 } , t g + ( P 1 Q 1 ) is also a nontrivial coset of P 1 Q 1 and contains an element g = 1 6 ( i u + j v + k w + l x + m y ) , where i , j , k , l , m { 0 , 1 , 2 , 3 , 4 , 5 } and i t i ( mod 6 ) , j t j ( mod 6 ) , k t k ( mod 6 ) , l t l ( mod 6 ) , m t m ( mod 6 ) . So 2 i 2 + 2 j 2 + 3 k 2 + 8 l 2 + 8 m 2 + 8 l m 0 ( mod 36 ) and ( 2 i 2 + 2 j 2 + 3 k 2 + 8 l 2 + 8 m 2 + 8 l m ) / 36 > 1 . Then ( i , j , k , l , m ) A : = {   ( 0 , 0 , 2 , 1 , 4 ) , ( 0 , 0 , 2 , 2 , 5 ) , ( 0 , 0 , 2 , 4 , 1 ) , ( 0 , 0 , 2 , 5 , 2 ) , ( 0 , 0 , 2 , 5 , 5 ) ,
( 0 , 0 , 4 , 1 , 1 ) , ( 0 , 0 , 4 , 1 , 4 ) , ( 0 , 0 , 4 , 2 , 5 ) , ( 0 , 0 , 4 , 4 , 1 ) , ( 0 , 0 , 4 , 5 , 2 ) ,
( 3 , 3 , 2 , 1 , 1 ) , ( 3 , 3 , 2 , 1 , 4 ) , ( 3 , 3 , 2 , 2 , 5 ) , ( 3 , 3 , 2 , 4 , 1 ) , ( 3 , 3 , 2 , 5 , 2 ) ,
( 3 , 3 , 2 , 5 , 5 ) , ( 3 , 3 , 4 , 1 , 1 ) , ( 3 , 3 , 4 , 1 , 4 ) , ( 3 , 3 , 4 , 2 , 5 ) , ( 3 , 3 , 4 , 4 , 1 ) ,
( 3 , 3 , 4 , 5 , 2 ) , ( 3 , 3 , 4 , 5 , 5 ) }
Furthermore, if g + ( P 1 Q 1 ) is an Abelian subgroup of order 2 of X / ( P 1 Q 1 ) , then ( i , j , k , l , m ) {   ( 0 , 0 , 0 , 3 , 0 ) , ( 0 , 0 , 0 , 0 , 3 ) , ( 0 , 0 , 0 , 3 , 3 ) ,   ( 3 , 3 , 0 , 3 , 3 ) , ( 3 , 3 , 0 , 3 , 0 ) , ( 3 , 3 , 0 , 0 , 3 ) } .
Thus the Abelian 2-group of type 2 × 2 is
A 1 : = ( 0 , 0 , 0 , 3 , 0 ) , ( 0 , 0 , 0 , 0 , 3 ) , ( 0 , 0 , 0 , 3 , 3 ) ,
A 2 : = ( 0 , 0 , 0 , 3 , 0 ) , ( 3 , 3 , 0 , 3 , 3 ) , ( 3 , 3 , 0 , 0 , 3 ) ,
A 3 : = ( 0 , 0 , 0 , 0 , 3 ) , ( 3 , 3 , 0 , 3 , 3 ) , ( 3 , 3 , 0 , 3 , 0 ) or
A 4 : = ( 0 , 0 , 0 , 3 , 3 ) , ( 3 , 3 , 0 , 3 , 0 ) , ( 3 , 3 , 0 , 0 , 3 ) .
If g + ( P 1 Q 1 ) is an Abelian subgroup of order 3 of X / ( P 1 Q 1 ) , then ( i , j , k , l , m ) { ( 0 , 0 , 4 , 2 , 2 ) , ( 0 , 0 , 4 , 4 , 4 ) , ( 0 , 0 , 2 , 2 , 2 ) , ( 0 , 0 , 2 , 4 , 4 ) }. Thus the group of order 3 is
B 1 : = ( 0 , 0 , 4 , 2 , 2 ) , ( 0 , 0 , 2 , 4 , 4 ) or B 2 : = ( 0 , 0 , 4 , 4 , 4 ) , ( 0 , 0 , 2 , 2 , 2 ) .
Since ( 0 , 0 , 2 , 4 , 4 ) + ( 0 , 0 , 0 , 3 , 3 ) = ( 0 , 0 , 2 , 1 , 1 ) and 1 6 ( 2 w + x + y ) has norm 1, we see X is isometric to
X 1 : = s p a n { u , v , w , x , y , 1 6 ( 3 x ) , 1 6 ( 3 u + 3 v + 3 y ) , 1 6 ( 4 w + 2 x + 2 y ) } ,
X 2 : = s p a n { u , v , w , x , y , 1 6 ( 3 y ) , 1 6 ( 3 u + 3 v + 3 x ) , 1 6 ( 4 w + 2 x + 2 y ) } ,
X 3 : = s p a n { u , v , w , x , y , 1 6 ( 3 x ) , 1 6 ( 3 y ) , 1 6 ( 2 w + 2 x + 2 y ) } ,
X 4 : = s p a n { u , v , w , x , y , 1 6 ( 3 x ) , 1 6 ( 3 u + 3 v + 3 y ) , 1 6 ( 2 w + 2 x + 2 y ) } ,
X 5 : = s p a n { u , v , w , x , y , 1 6 ( 3 y ) , 1 6 ( 3 u + 3 v + 3 x ) , 1 6 ( 2 w + 2 x + 2 y ) } or
X 6 : = s p a n { u , v , w , x , y , 1 6 ( 3 x + 3 y ) , 1 6 ( 3 u + 3 v + 3 x ) , 1 6 ( 2 w + 2 x + 2 y ) } .
Considering the isometry defined by u u , v v , w w , x y , y x , we see X 1 X 2 and X 4 X 5 . By calculation, we find unit vectors x + y 2 1 3 ( w + x + y ) = 1 6 ( x + y 2 w ) X 3 , X 6 , and y 2 w + x + y 3 = y 2 ( 2 w + x + y 3 w ) = 1 6 ( y 2 x 2 w ) X 1 , X 5 , which are contradictions. So in Case 2.2, there is no lattice of rank 5 and determinant 4. The proof is complete. □

4. Conclusions

In this paper, we have classified the positive definite integral lattices of rank 5 and determinant 4. We showed that there are exactly five such lattices up to isometry, as listed in Theorem 1. These lattices are 2 Z Z 4 , A 1 A 1 Z 3 , A 3 Z 2 , D 4 Z , and D 5 .
This classification avoids the combinatorial explosion of higher dimensions. And it would bridge classical low-dimensional results and uncharted territory in lattice theory. Future work might include the classification of lattices with higher rank or determinant, or studying the automorphism groups of these lattices.

Author Contributions

Software, L.G. and L.L.; Writing—review and editing, L.Z. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by Guangdong Basic and Applied Basic Research Foundation (2025A1515012072).

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Guo, S.; Li, Y.; Wang, D. 2-Term Extended Rota–Baxter Pre-Lie-Algebra and Non-Abelian Extensions of Extended Rota–Baxter Pre-Lie Algebras. Results Math. 2025, 80, 96. [Google Scholar] [CrossRef]
  2. Zhao, L.; Gong, L.; Guo, X. Finite p-groups with a trivial core or the normal closure index p for every nonnormal abelian subgroup. Chin. Ann. Math. A 2021, 42, 419–426. [Google Scholar]
  3. Zhao, L.; Li, Y.; Gong, L.; Guo, X. Finite p-groups in which the cores of all the nonnormal subgroups are in the center. J. Algebra Appl. 2025, 24, 2550202. [Google Scholar] [CrossRef]
  4. Ebeling, W. Lattices and Codes, 3rd ed.; Springer: Cham, Switzerland, 2023. [Google Scholar]
  5. Conway, J.H.; Sloane, N.J.A. Sphere Packings, Lattices and Groups; Springer: Cham, Switzerland, 1988. [Google Scholar]
  6. Tian, Z.; Lee, A.; Zhou, S. Adaptive Tempered Reversible Jump Algorithm for Bayesian Curve Fitting; IOP Publishing Ltd.: Bristol, UK, 2024. [Google Scholar] [CrossRef]
  7. Kitazume, M.; Munemasa, A. Even Unimodular Gaussian Lattices of Rank 12. J. Number Theory 2002, 95, 77–94. [Google Scholar] [CrossRef]
  8. Henn, A.; Hentschel, M.; Krieg, A. On the classification of lattices over Q 3 which are even unimodular Z-lattices of rank 32. Int. J. Math. Math. Sci. 2013, 2, 183–192. [Google Scholar] [CrossRef]
  9. Ozeki, M. On even unimodular positive definite quadratic lattices of rank 32. Math. Z. 1986, 191, 283–291. [Google Scholar] [CrossRef]
  10. Mordell, L.J. The definite quadratic forms in eight variables with determinant unity. J. Math. Pures Appl. 1938, 17, 41–46. [Google Scholar]
  11. Griess, R.L., Jr. Positive definite lattices of rank at most 8. J. Number Theory 2003, 103, 77–84. [Google Scholar] [CrossRef]
  12. Griess, R.L., Jr. An Introduction to Groups and Lattices:Finite Groups and Positive Definite Rational Lattices; Higher Education Press: Beijing, China, 2010. [Google Scholar]
  13. Borcherds, R.E. Classification of positive definite lattices. Duke Math.J. 1999, 105, 525–567. [Google Scholar] [CrossRef]
  14. Segre, B. Lattice points in infinite domains, and asymmetric Diophantine approximations. Duke Math. J. 1945, 12, 337–365. [Google Scholar] [CrossRef]
  15. Lu, J.; Harshan, J.; Oggier, F. Performance of lattice coset codes on Universal Software Radio Peripherals. Phys. Commun. 2017, 24, 94–102. [Google Scholar] [CrossRef]
  16. Zhao, L.; Li, Y.; Gong, L.; Guo, X. Finite p-groups in which the normalizer of each nonnormal subgroup is small. Hacet. J. Math. Stat. 2024, 53, 1642–1646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhao, L.; Li, Y.; Gong, L.; Li, L. The Classification of Lattices of Determinant 4 and Rank 5. Axioms 2025, 14, 577. https://doi.org/10.3390/axioms14080577

AMA Style

Zhao L, Li Y, Gong L, Li L. The Classification of Lattices of Determinant 4 and Rank 5. Axioms. 2025; 14(8):577. https://doi.org/10.3390/axioms14080577

Chicago/Turabian Style

Zhao, Libo, Yangming Li, Lü Gong, and Lili Li. 2025. "The Classification of Lattices of Determinant 4 and Rank 5" Axioms 14, no. 8: 577. https://doi.org/10.3390/axioms14080577

APA Style

Zhao, L., Li, Y., Gong, L., & Li, L. (2025). The Classification of Lattices of Determinant 4 and Rank 5. Axioms, 14(8), 577. https://doi.org/10.3390/axioms14080577

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop