Categories of L-Primals, L-Pre-Proximities, and L-Topologies
Abstract
1. Introduction
2. Preliminaries
2.1. Complete Lattices
2.2. L-Subsets and L-Topological Structures
3. -Primals and -Neighborhoods
4. -Primal, -Pre-Proximity, and -Topological Spaces
4.1. On the Adjunction
4.2. On the Adjunction
4.3. Applications
5. Conclusions
- Exploring the category of L-primal-proximities based on the L-primal notion and its relationship with the category of L-topological structures.
- Investigating the connections between the category of L-topogenous structures and the category of L-primal spaces.
- Developing L-neighborhoods induced L-pre-proximities and exploring their potential applications.
- Investigating the connections between the category of L-primal approximation spaces by L-neighborhoods with possible applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
L | A complete lattice |
The category of L-topological spaces with continuous maps as morphisms | |
The category of L-pre-proximity spaces with L-proximity maps as morphisms | |
The category of L-primal spaces with L-primal maps as morphisms | |
The category of stratified L-primal spaces |
References
- Goguen, J.A. L-fuzzy sets. J. Math. Anal. Appl. 1967, 18, 145–174. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Cont. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Höhle, U.; Rodabaugh, S.E. Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory; The Handbooks of Fuzzy Sets Series; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Kubiak, T.; Šostak, A. Lower set-valued fuzzy topologies. Quaes. Math. 1997, 20, 423–430. [Google Scholar]
- Fang, J. The relationships between L-ordered convergence structures and strong L-topologies. Fuzzy Sets Syst. 2010, 161, 2923–2944. [Google Scholar] [CrossRef]
- Li, L.Q.; Jin, Q. On stratified L-convergence spaces, pretopological axioms and diagonal axioms. Fuzzy Sets Sys. 2012, 204, 40–52. [Google Scholar] [CrossRef]
- Perfilieva, I.; Ramadan, A.A.; Elkordy, E.H. Categories of L-fuzzy Čech closure spaces and L-fuzzy co-topological spaces. Mathematics 2020, 8, 1274. [Google Scholar] [CrossRef]
- Rodabaugh, S.E.; Klement, E.P. Topological and Algebraic Structures In Fuzzy Sets. In The Handbook of Recent Developments in the Mathematics of Fuzzy Sets; Kluwer Academic Publishers: Boston, MA, USA; Dordrecht, The Netherlands; London, UK, 2003. [Google Scholar]
- Zhang, D. An enriched category approach to many valued topology. Fuzzy Sets Syst. 2007, 158, 349–366. [Google Scholar] [CrossRef]
- Katsaras, A.K. Fuzzy syntopogenous structures compatible with Lowen fuzzy uniformities and Artico-Moresco fuzzy proximities. Fuzzy Sets Syst. 1990, 36, 375–393. [Google Scholar] [CrossRef]
- Katsaras, A.K. Operations on fuzzy syntopogenous structures. Fuzzy Sets Syst. 1991, 43, 199–217. [Google Scholar] [CrossRef]
- Artico, G.; Moresco, R. Fuzzy proximities and totally bounded fuzzy uniformities. J. Math. Anal. Appl. 1984, 99, 320–337. [Google Scholar] [CrossRef]
- Čimoka, D.; Šostak, A.P. L-fuzzy syntopogenous structures, Part I: Fundamentals and application to L-fuzzy topologies, L-fuzzy proximities and L-fuzzy uniformities. Fuzzy Sets Syst. 2013, 232, 74–97. [Google Scholar] [CrossRef]
- Kim, Y.C.; Min, K.C. L-fuzzy proximities and L-fuzzy topologies. Infor. Sci. 2005, 173, 93–113. [Google Scholar] [CrossRef]
- Kim, Y.C.; Oh, J.-M. Alexandrov L-Fuzzy Pre-Proximities. Mathematics 2019, 7, 85. [Google Scholar] [CrossRef]
- Močkoř, J. Functors among Relational Variants of Categories Related to L-Fuzzy Partitions, L-Fuzzy Pretopological Spaces and L-Fuzzy Closure Spaces. Axioms 2020, 9, 63. [Google Scholar] [CrossRef]
- Jose, M.; Mathew, S.C. On the categorical connections of L-G-filter spaces and a Galois correspondence with L-fuzzy pre-proximity spaces. New Mat. Natu. Comp. 2023, 19, 33–49. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Elkordy, E.H.; Kim, Y.C. Perfect L-fuzzy topogenous spaces, L-fuzzy quasi-proximities and L-fuzzy quasi-uniform spaces. J. Intell. Fuzzy Syst. 2015, 28, 2591–2604. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Usama, M.A.; El-Latif, A.A.A. L-fuzzy pre-proximities, L-fuzzy filters and L-fuzzy grills. J. Egypt. Math. Soc. 2020, 28, 28–47. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Fawakhreh, A.J. On L-fuzzy preproximity spaces and L-fuzzy ideals. New Math. Nat. Comp. 2025, 1–20. [Google Scholar] [CrossRef]
- Al-Saadi, H.; Al-Hodieb, M. Sets related to openness and continuity decompositions in primal topological spaces. Eur. J. Pure Appl. Math. 2024, 17, 1352–1368. [Google Scholar] [CrossRef]
- Matejdes, M. On Topologies Induced by Ideals, Primals, Filters and Grills. Axioms 2024, 13, 698. [Google Scholar] [CrossRef]
- Sasmaz, P.; Özcoç, M. On a new operator based on a primal and its associated topology. Eur. J. Pure Appl. Math. 2024, 17, 2800–2811. [Google Scholar] [CrossRef]
- Hosny, R.; El-Bably, M.K.; El-Gayar, M.A. Primal approximations spaces by κ-neighborhoods with applications. Eur. J. Pure Appl. Math. 2025, 18, 5827. [Google Scholar] [CrossRef]
- Acharjee, S.; Özcoç, M.; Issaka, F.Y. Primal topological spaces. Bol. Soc. Parana. Mat. 2025, 43, 1–9. [Google Scholar] [CrossRef]
- Al-Omari, A.; Alqahtani, M.H. Primal Structure with Closure Operators and Their Applications. Mathematics 2023, 11, 4946. [Google Scholar] [CrossRef]
- Al-Omari, A.; Acharjee, S.; Özcoç, M. A new operator of primal topological spaces. Mathematica 2023, 65, 175–183. [Google Scholar] [CrossRef]
- Al-Omari, A.; Acharjee, S.; Özcoç, M. Primal-proximity spaces. Mathematica 2024, 66, 151–167. [Google Scholar] [CrossRef]
- Bělohlávek, R. Fuzzy Relation Systems, Foundation and Principles; Kluwer Academic, Plenum Publishers: New York, NY, USA; Boston, MA, USA; Dordrecht, The Netherlands; London, UK; Moscow, Russia, 2002. [Google Scholar]
- Adámek, J.; Herrlich, H.; Strecker, G.E. Abstract and Concrete Categories; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning About Data Rough Sets: Theoretical Aspects of Reasoning About Data; Kluwer Academic Publishers: Boston, MA, USA, 1991. [Google Scholar]
- Tiwari, S.P.; Srivastava, A.K. Fuzzy rough sets, fuzzy preorders and fuzzy topologies. Fuzz. Sets Syst. 2013, 210, 63–68. [Google Scholar] [CrossRef]
0.6 | 0.3 | 0.2 | 0.4 | 0.3 | 0.2 | |
0.1 | 0.5 | 0.4 | 0.5 | 0.3 | 0.3 | |
0.1 | 0.2 | 0.5 | 0.3 | 0.3 | 0.1 | |
0.1 | 0.5 | 0.4 | 0.5 | 0.3 | 0.2 | |
0.3 | 0.2 | 0.2 | 0.3 | 0.6 | 0.1 | |
0.3 | 0.3 | 0.2 | 0.3 | 0.7 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, A.A.; Fawakhreh, A.J. Categories of L-Primals, L-Pre-Proximities, and L-Topologies. Axioms 2025, 14, 541. https://doi.org/10.3390/axioms14070541
Ramadan AA, Fawakhreh AJ. Categories of L-Primals, L-Pre-Proximities, and L-Topologies. Axioms. 2025; 14(7):541. https://doi.org/10.3390/axioms14070541
Chicago/Turabian StyleRamadan, Ahmed A., and Anwar J. Fawakhreh. 2025. "Categories of L-Primals, L-Pre-Proximities, and L-Topologies" Axioms 14, no. 7: 541. https://doi.org/10.3390/axioms14070541
APA StyleRamadan, A. A., & Fawakhreh, A. J. (2025). Categories of L-Primals, L-Pre-Proximities, and L-Topologies. Axioms, 14(7), 541. https://doi.org/10.3390/axioms14070541