Stability Analysis of a Master–Slave Cournot Triopoly Model: The Effects of Cross-Diffusion
Abstract
1. Introduction
2. Preliminary to Stability/Instability Analysis
3. Linearized Analysis: Stability and Diffusion-Driven Turing Instability
3.1. The Model Without Diffusion
- (i)
- is an attractor; i.e., there exists an open set, , such thatfor any initial data , with
- (ii)
- is positively invariant, i.e.,
3.2. The Model with Diffusion: Cross Diffusion-Driven Turing Instability
4. Numerical Examples
4.1. Details on the Implementation of the 2D Finite-Difference Method to Solve the Spatial Triopoly System
- Input user-provided parameters (a, b, ,, , , , );
- Input diffusion coefficients (, , , , );
- Input space and time discretization parameters (the time and space steps and and the extremes of the space interval , , , );
- Evaluate the Nash equilibrium , given by (8);
- Set the initial data as a random perturbation around the Nash equilibrium;
- Construct the discrete Laplacian matrix to approximate the space derivatives;
- Construct the matrices , , and ;
- Perform the LU factorization of , , and , obtaining , for ;
- Time stepping procedure (repeat for each timestep):
- -
- Update the right-hand-side , for , of system (29);
- -
- Forward substitution to solve for and for ;
- -
- Back-substitution to solve for , for .
4.2. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tu, H.; Wang, X. Research on a dynamic master slave Cournot triopoly game model with bounded rational rule and its control. Math. Probl. Eng. 2016, 2016, 2353909. [Google Scholar] [CrossRef]
- Puu, T. Attractors, Bifurcations, & Chaos: Nonlinear Phenomena in Economics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Puu, T.; Sushko, I. Oligopoly Dynamics: Models and Tools; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Bischi, G.I.; Naimzada, A. Global Analysis of a Dynamic Duopoly Game with Bounded Rationality. In Advances in Dynamic Games and Applications; Filar, J.A., Gaitsgory, V., Mizukami, K., Eds.; Birkhäuser Boston: Boston, MA, USA, 2000; pp. 361–385. [Google Scholar]
- Zhao, L.; Zhang, J. Analysis of a duopoly game with heterogeneous players participating in carbon emission trading. Nonlinear Anal. Model. Control 2014, 19, 118–131. [Google Scholar] [CrossRef]
- Elsadany, A.A. Dynamics of a delayed duopoly game with bounded rationality. Math. Comput. Model. 2010, 52, 1479–1489. [Google Scholar] [CrossRef]
- Naimzada, A.; Tramontana, F. Dynamic properties of a Cournot-Bertrand duopoly game with differentiated products. Econ. Model. 2012, 29, 1436–1439. [Google Scholar] [CrossRef]
- Wang, H.; Ma, J. Complexity analysis of a Cournot-Bertrand duopoly game model with limited information. Discret. Dyn. Nat. Soc. 2013, 2013, 287371. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Li, X.; Eskandari, Z.; He, Q. Bifurcation analysis and complex dynamics of a Kopel triopoly model. J. Comput. Appl. Math. 2023, 426, 115089. [Google Scholar] [CrossRef]
- Yu, Y. The stability of a dynamic duopoly Cournot–Bertrand game model. J. Comput. Appl. Math. 2022, 413, 114399. [Google Scholar] [CrossRef]
- Fanti, L.; Gori, L.; Sodini, M. Nonlinear dynamics in a Cournot duopoly with relative profit delegation. Chaos Solitons Fractals 2012, 45, 1469–1478. [Google Scholar] [CrossRef][Green Version]
- Ma, J.H.; Ji, W. Complexity of repeated game model in electric power triopoly. Chaos Solitons Fractals 2009, 40, 1735–1740. [Google Scholar] [CrossRef]
- Kan-on, Y.; Mimura, M. Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics. SIAM J. Math. Anal. 1998, 29, 1519–1536. [Google Scholar] [CrossRef]
- Kabir, M.H.; Gani, M.O. Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation. J. Theor. Biol. 2022, 536, 110997. [Google Scholar] [CrossRef] [PubMed]
- Sherratt, J. Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments V: The transition from patterns to desert. SIAM J. Appl. Math. 2013, 73, 1347–1367. [Google Scholar] [CrossRef]
- Carfora, M.F.; Iovanna, F.; Torcicollo, I. Turing patterns in an intraguild predator–prey model. Math. Comput. Simul. 2025, 232, 192–210. [Google Scholar] [CrossRef]
- Murray, J. Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed.; Interdisciplinary Applied Mathematics; Springer: New York, NY, USA, 2003; Volume 18. [Google Scholar]
- Cantrell, R.S.; Cosner, C. Spatial Ecology via Reaction-Diffusion Equations; John Wiley and Sons Ltd.: Chichester, UK, 2003. [Google Scholar]
- Lombardo, M.C.; Barresi, R.; Bilotta, E.; Gargano, F.; Pantano, P.; Sammartino, M. Demyelination patterns in a mathematical model of multiple sclerosis. J. Math. Biol. 2017, 75, 373–417. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cai, Y.; Wu, M.; Wang, K.; Li, Z. Complex dynamics of a reaction–diffusion epidemic model. Nonlinear Anal. Real World Appl. 2012, 13, 2240–2258. [Google Scholar] [CrossRef]
- Avila-Vales, E.; Pérez, A. Dynamics of a reaction–diffusion SIRS model with general incidence rate in a heterogeneous environment. Z. Für Angew. Math. Und Phys. 2021, 73, 9. [Google Scholar] [CrossRef] [PubMed]
- Petrovskii, S.; Alharbi, W.; Alhomairi, A.; Morozov, A. Modelling Population Dynamics of Social Protests in Time and Space: The Reaction-Diffusion Approach. Mathematics 2020, 8, 78. [Google Scholar] [CrossRef]
- Wen, Z.; Fu, S. Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics. J. Comput. Appl. Math. 2009, 230, 34–43. [Google Scholar] [CrossRef]
- Inferrera, G.; Munafò, C.F.; Oliveri, F.; Rogolino, P. Reaction-diffusion models of crimo–taxis in a street. Appl. Math. Comput. 2024, 467, 34–43. [Google Scholar] [CrossRef]
- Short, M.B.; Bertozzi, A.L.; Brantingham, P.J. Nonlinear Patterns in Urban Crime: Hotspots, Bifurcations, and Suppression. SIAM J. Appl. Dyn. Syst. 2010, 9, 462–483. [Google Scholar] [CrossRef]
- Turing, A. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 1952, 237, 37–72. [Google Scholar]
- Kondo, S.; Miura, T. Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation. Science 2010, 329, 1616–1620. [Google Scholar] [CrossRef] [PubMed]
- Torcicollo, I. On the dynamics of a non-linear Duopoly game model. Int. J. Non-Linear Mech. 2013, 57, 31–38. [Google Scholar] [CrossRef]
- Rionero, S.; Torcicollo, I. On the dynamics of a nonlinear reaction-diffusion duopoly model. Int. J. Non-Linear Mech. 2018, 99, 105–111. [Google Scholar] [CrossRef]
- Torcicollo, I. On the nonlinear stability of a continuous duopoly model with constant conjectural variation. Int. J. Non-Linear Mech. 2016, 81, 268–273. [Google Scholar] [CrossRef][Green Version]
- Torcicollo, I. Su alcuni problemi di diffusione non lineare. Boll. Della Unione Mat. Ital. A 2000, 3, 407–410. [Google Scholar]
- De Angelis, M. A wave equation perturbed by viscous terms: Fast and slow times diffusion effects in a Neumann problem. Ric. Mat. 2019, 68, 237–252. [Google Scholar] [CrossRef]
- Capone, F.; Carfora, M.F.; De Luca, R.; Torcicollo, I. Nonlinear stability and numerical simulations for a reaction–diffusion system modelling Allee effect on predators. Int. J. Nonlinear Sci. Numer. Simul. 2022, 23, 751–760. [Google Scholar] [CrossRef]
- Carfora, M.F.; Torcicollo, I. A fractional-in-time prey–predator model with hunting cooperation: Qualitative analysis, stability and numerical approximations. Axioms 2021, 10, 78. [Google Scholar] [CrossRef]
- Merkin, D.R. Introduction to the Theory of Stability; Text in Applied Mathematic; Springer: New York, NY, USA, 1997; Volume 24. [Google Scholar]
- Carfora, M.F.; Torcicollo, I. Cross-diffusion-driven instability in a predator-prey system with fear and group defense. Mathematics 2020, 8, 1244. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1996; p. xxvii + 694. [Google Scholar]
- Saad, Y.; Schultz, M.H. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- Xie, Z. Cross-diffusion induced Turing instability for a three species food chain model. J. Math. Anal. Appl. 2012, 388, 539–547. [Google Scholar] [CrossRef][Green Version]
- Yi, F. Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling. J. Differ. Equ. 2021, 281, 379–410. [Google Scholar] [CrossRef]
- Gambino, G.; Giunta, V.; Lombardo, M.C.; Rubino, G. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discret. Contin. Dyn. Syst. B 2022, 27, 7783–7816. [Google Scholar] [CrossRef]
Name | Description | Value (Ex 1) | Value (Ex 2) |
---|---|---|---|
a | inverse demand function intercept | 10 | 10 |
b | inverse demand function slope | 1 | 1 |
output adjustment speed for X | 0.2 | 0.05 | |
output adjustment speed for Y | 0.05 | 0.2 | |
output adjustment speed for Z | 0.05 | 0.05 | |
variable cost parameter for X | 0.6 | 0.6 | |
variable cost parameter for Y | 0.5 | 0.5 | |
variable cost parameter for Z | 0.7 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carfora, M.F.; Torcicollo, I. Stability Analysis of a Master–Slave Cournot Triopoly Model: The Effects of Cross-Diffusion. Axioms 2025, 14, 540. https://doi.org/10.3390/axioms14070540
Carfora MF, Torcicollo I. Stability Analysis of a Master–Slave Cournot Triopoly Model: The Effects of Cross-Diffusion. Axioms. 2025; 14(7):540. https://doi.org/10.3390/axioms14070540
Chicago/Turabian StyleCarfora, Maria Francesca, and Isabella Torcicollo. 2025. "Stability Analysis of a Master–Slave Cournot Triopoly Model: The Effects of Cross-Diffusion" Axioms 14, no. 7: 540. https://doi.org/10.3390/axioms14070540
APA StyleCarfora, M. F., & Torcicollo, I. (2025). Stability Analysis of a Master–Slave Cournot Triopoly Model: The Effects of Cross-Diffusion. Axioms, 14(7), 540. https://doi.org/10.3390/axioms14070540