Averaging of Linear Quadratic Parabolic Optimal Control Problem
Abstract
1. Introduction
- We establish the existence and uniqueness of optimal solutions for the averaged control problem.
- We analyze the convergence of optimal controls as the probability measure representing system uncertainty becomes more concentrated.
2. Setting of the Problem
3. Preliminary Results
4. Main Results
5. An Example
6. Conclusions
- We established the existence and uniqueness of the optimal control solution under appropriate assumptions.
- We proved the convergence of the optimal control as the probability distribution governing the system dynamics become more concentrated.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evans, L.C. Partial Differential Equations, 2nd ed.; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Anderson, B.D.O.; Moore, J.B. Optimal Control: Linear Quadratic Methods; Prentice Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Kapustyan, O.V.; Kapustyan, O.A.; Sukretna, A.V. Approximate bounded synthesis for one weakly nonlinear boundary-value problem. Nonlinear Oscil. 2009, 12, 297–304. [Google Scholar] [CrossRef]
- Pesare, A.; Palladino, M.; Falcone, M. Convergence results for an averaged LQR problem with applications to reinforcement learning. Math. Control Signals Syst. 2021, 33, 379–411. [Google Scholar] [CrossRef]
- Kapustian, O.A. Approximate optimal regulator for distributed control problem with superposition functional and rapidly oscillating coefficients. In Modern Mathematics and Mechanics; Sadovnichiy, V., Zgurovsky, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 199–208. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Sutton, R.S.; Barto, A.G.; Williams, R.J. Reinforcement learning is direct adaptive optimal control. IEEE Control Syst. 1992, 12, 19–22. [Google Scholar]
- Recht, B. A tour of reinforcement learning: The view from continuous control. Annu. Rev. Control Robot Auton. Syst. 2019, 2, 253–279. [Google Scholar] [CrossRef]
- Atkeson, C.G.; Santamaria, J.C. A comparison of direct and model-based reinforcement learning. In Proceedings of the International Conference on Robotics and Automation, Albuquerque, NM, USA, 20–25 April 1997; Volume 4, pp. 3557–3564. [Google Scholar]
- Deisenroth, M.P. Efficient Reinforcement Learning Using Gaussian Processes; KIT Scientific Publishing: Karlsruhe, Germany, 2010. [Google Scholar]
- Deisenroth, M.P.; Fox, D.; Rasmussen, C.E. Gaussian processes for data-efficient learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 37, 408–423. [Google Scholar] [CrossRef]
- Gal, Y.; McAllister, R.; Rasmussen, C.E. Improving PILCO with Bayesian neural network dynamics models. In Proceedings of the ICML Workshop on Data-Efficient Machine Learning, New York, NY, USA, 24 June 2016; Volume 4, p. 25. [Google Scholar]
- Janner, M.; Fu, J.; Zhang, M.; Levine, S. When to trust your model: Model-based policy optimization. Adv. Neural Inf. Process. Syst. 2019, 32, 12519–12530. [Google Scholar]
- Kamthe, S.; Deisenroth, M. Data-efficient reinforcement learning with probabilistic model predictive control. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), Playa Blanca, Lanzarote, Spain, 9–11 April 2018; pp. 1701–1710. [Google Scholar]
- Chowdhary, G.; Kingravi, H.A.; How, J.P.; Vela, P.A. A Bayesian nonparametric approach to adaptive control using Gaussian processes. In Proceedings of the IEEE Conference Decision Control (CDC), Florence, Italy, 10–13 December 2013; pp. 874–879. [Google Scholar]
- Chua, K.; Calandra, R.; McAllister, R.; Levine, S. Deep reinforcement learning in a handful of trials using probabilistic dynamics models. Adv. Neural Inf. Process. Syst. 2018, 31, 4754–4765. [Google Scholar]
- Wang, T.; Bao, X.; Clavera, I.; Hoang, J.; Wen, Y.; Langlois, E.; Zhang, S.; Zhang, G.; Abbeel, P.; Ba, J. Benchmarking Model-Based Reinforcement Learning. arXiv 2019, arXiv:1907.02057. [Google Scholar]
- Murray, R.; Palladino, M. A model for system uncertainty in reinforcement learning. Syst. Control Lett. 2018, 122, 24–31. [Google Scholar] [CrossRef]
- Murray, R.; Palladino, M. Modelling uncertainty in reinforcement learning. In Proceedings of the IEEE Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019; pp. 2436–2441. [Google Scholar]
- Bettiol, P.; Khalil, N. Necessary optimality conditions for average cost minimization problems. Discrete Contin. Dyn. Syst. B 2019, 24, 2093. [Google Scholar] [CrossRef]
- Palladino, M. Necessary conditions for adverse control problems expressed by relaxed derivatives. Set-Valued Var. Anal. 2016, 24, 659. [Google Scholar] [CrossRef]
- Ross, I.M.; Proulx, R.J.; Karpenko, M.; Gong, Q. Riemann–Stieltjes optimal control problems for uncertain dynamic systems. J. Guid. Control Dyn. 2015, 38, 1251–1263. [Google Scholar] [CrossRef]
- Lohéac, J.; Zuazua, E. From averaged to simultaneous controllability. Ann. Fac. Sci. Toulouse Math. 2016, 25, 785–828. [Google Scholar] [CrossRef]
- Zuazua, E. Averaged control. Automatica 2014, 50, 3077–3087. [Google Scholar] [CrossRef]
- Barabash, O.; Sobchuk, V.; Sobchuk, A.; Musienko, A.; Laptiev, O. Algorithms for synthesis of functionally stable wireless sensor network. Adv. Inf. Syst. 2025, 9, 70–79. [Google Scholar]
- Doya, K. Reinforcement learning in continuous time and space. Neural Comput. 2000, 12, 219–245. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, J.B.; Choi, Y.H. Integral reinforcement learning for continuous-time input-affine nonlinear systems with simultaneous invariant explorations. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 916–932. [Google Scholar]
- Lewis, F.L.; Vrabie, D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst. Mag. 2009, 9, 32. [Google Scholar] [CrossRef]
- Munos, R. A study of reinforcement learning in the continuous case by the means of viscosity solutions. Mach. Learn. 2000, 40, 265–297. [Google Scholar] [CrossRef]
- Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics; Springer Science & Business Media: Cham, Switzerland, 2013. [Google Scholar]
- Villani, C. Optimal Transport: Old and New; Springer: Berlin, Germany, 2009. [Google Scholar]
- Lions, J.L. Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués; Masson: Paris, France, 1988. [Google Scholar]
- Fleming, W.H.; Soner, H.M. Controlled Markov Processes and Viscosity Solutions, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Makarovych, V.; Makarovych, A. Analysis of socio-economic determinants of youth employment using machine learning methods. Acta Acad. Beregsasiensis Econ. 2024, 6, 81–101. [Google Scholar]
- Glebena, M.I.; Makarovych, A.V. SingleStoreDB connector for Apache Beam. Sci. Bull. Uzhhorod Univ. Ser. Math. Inf. 2024, 44, 66–82. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapustian, O.; Laptiev, O.; Makarovych, A. Averaging of Linear Quadratic Parabolic Optimal Control Problem. Axioms 2025, 14, 512. https://doi.org/10.3390/axioms14070512
Kapustian O, Laptiev O, Makarovych A. Averaging of Linear Quadratic Parabolic Optimal Control Problem. Axioms. 2025; 14(7):512. https://doi.org/10.3390/axioms14070512
Chicago/Turabian StyleKapustian, Olena, Oleksandr Laptiev, and Adalbert Makarovych. 2025. "Averaging of Linear Quadratic Parabolic Optimal Control Problem" Axioms 14, no. 7: 512. https://doi.org/10.3390/axioms14070512
APA StyleKapustian, O., Laptiev, O., & Makarovych, A. (2025). Averaging of Linear Quadratic Parabolic Optimal Control Problem. Axioms, 14(7), 512. https://doi.org/10.3390/axioms14070512