Treatment Effect Estimation in Survival Analysis Using Copula-Based Deep Learning Models for Causal Inference
Abstract
1. Introduction
2. Experimental Details
3. Statistical Methods
3.1. Causal Weighting Methods in Survival Analysis
3.2. Logistic Regression for Propensity Score Estimation
3.3. Causal Forests
3.4. Gaussian Copula Transformation
- is the standard normal CDF;
- is its quantile function;
- is the joint CDF of a multivariate normal distribution with correlation matrix .
3.4.1. Transforming Data for Copula Modeling
3.4.2. Parameter Estimation via Maximum Likelihood
3.4.3. Simulation from the Gaussian Copula
- Simulate .
- Transform to uniform marginals: .
- Map to the original scale using inverse marginal CDFs:
3.4.4. Applications in Survival Analysis and Causal Inference
- Survival Analysis: Copula transformations allow for modeling correlated time-to-event features, improving calibration and risk stratification.
- Causal Inference: Improved balance in covariates via Copula-based propensity score modeling leads to more accurate treatment effect estimation.
- Deep Learning Pipelines: Copula-preprocessed features improve training stability and performance in LSTM-based causal models.
3.5. Bootstrapped Confidence Intervals
- Resample the observed dataset to generate a bootstrap sample of size n, sampled with replacement.
- Compute the statistic of interest using .
- Repeat steps 1 and 2 for B bootstrap iterations, obtaining bootstrap estimates .
- Construct the confidence interval using empirical quantiles of the bootstrap distribution.
3.5.1. Types of Bootstrapped Confidence Intervals
Percentile Method
Bias-Corrected and Accelerated (BCa) Method
- is the bias-correction factor;
- a is the acceleration parameter;
- is the -th quantile of the standard normal distribution;
- is the standard normal CDF.
Normal Approximation Method
3.5.2. Bootstrapping in Causal Inference and Survival Analysis
3.6. Sensitivity Analysis
4. Main Results
4.1. Simulated Data Analysis
4.1.1. LSTM Model Training
4.1.2. Bootstrapped Confidence Intervals
4.2. Real Data Analysis
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. R Code
References
- Rubin, D.B. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. 1974, 66, 688–701. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Imbens, G.W. Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review. Rev. Econ. Stat. 2004, 86, 4–29. [Google Scholar] [CrossRef]
- Austin, P.C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef]
- Anderson, C.; Rutkowski, L. Multinomial Logistic Regression; Osborne, J., Ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008; pp. 390–409. [Google Scholar]
- Kim, J.-M. Integrating Copula-Based Random Forest and Deep Learning Approaches for Analyzing Heterogeneous Treatment Effects in Survival Analysis. Mathematics 2025, 13, 1659. [Google Scholar] [CrossRef]
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000. [Google Scholar]
- Zhao, Q.; Hastie, T.; Tibshirani, R. Efficient computation of regularization paths for generalized additive models. J. Comput. Graph. Stat. 2019, 28, 727–744. [Google Scholar]
- Wager, S.; Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 2018, 113, 1228–1242. [Google Scholar] [CrossRef]
- Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 2018, 18, 24. [Google Scholar] [CrossRef]
- Hu, L.; Ji, J.; Li, F. Estimating heterogeneous survival treatment effect in observational data using machine learning. Stat. Med. 2021, 40, 4691–4713. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, J.; Zhao, X. DeepSurv landmarking: A deep learning approach for dynamic survival analysis with longitudinal data. J. Stat. Comput. Simul. 2024, 95, 186–207. [Google Scholar] [CrossRef]
- Meyer, P.G.; Cherstvy, A.G.; Seckler, H.; Hering, R.; Blaum, N.; Jeltsch, F.; Metzler, R. Directedeness, correlations, and daily cycles in springbok motion: From data via stochastic models to movement prediction. Phys. Rev. Res. 2023, 5, 043129. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.W.; Qin, Y. Finite-Time Topology Identification of Delayed Complex Dynamical Networks and Its Application. Cyborg Bionic Syst. 2024, 5, 92. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Qi, J.; Peng, Y. Leave It to Large Language Models! Correction and Planning with Memory Integration. Cyborg Bionic Syst. 2024, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; You, T.; Chen, J.; Zhang, Y.; Du, C. LI-EMRSQL: Linking Information Enhanced Text2SQL Parsing on Complex Electronic Medical Records. IEEE Trans. Reliab. 2024, 73, 1280–1290. [Google Scholar] [CrossRef]
- Lou, Y.; Cheng, M.; Cao, Q.; Li, K.; Qin, H.; Bao, M.; Zhang, Y.; Lin, S.; Zhang, Y. Simultaneous quantification of mirabegron and vibegron in human plasma by HPLC-MS/MS and its application in the clinical determination in patients with tumors associated with overactive bladder. J. Pharm. Biomed. 2024, 240, 115937. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.-F.; Wang, X.-Q.; Deng, L.; He, B.-S.; Li, J.-M. Mechanisms and therapeutic potential of chinonin in nervous system diseases. J. Asian Nat. Prod. Res. 2024, 26, 1405–1420. [Google Scholar]
- Fang, W.; Sun, W.; Fang, W.; Zhang, J.; Wang, C. Clinical features, treatment, and outcome of pembrolizumab induced cholangitis. Naunyn-Schmiedeberg’s Arch. Pharmacol 2024, 397, 7905–7912. [Google Scholar]
- Cheng, Z.; Wang, H.; Zhang, Y.; Ren, B.; Fu, Z.; Li, Z.; Tu, C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett. 2025, 616, 217585. [Google Scholar] [CrossRef]
- Joe, H. Dependence Modeling with Copulas; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hernán, M.A.; Robins, J.M. Causal Inference: What If; Chapman & Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Athey, S.; Imbens, G. Recursive partitioning for heterogeneous causal effects. Proc. Natl. Acad. Sci. USA 2016, 113, 7353–7360. [Google Scholar] [CrossRef]
- Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. 1959, 8, 229–231. [Google Scholar]
- Efron, B. Better Bootstrap Confidence Intervals. J. Am. Stat. Assoc. 1987, 82, 171–185. [Google Scholar] [CrossRef]
Method | Estimate | LowerCI | UpperCI | |
---|---|---|---|---|
1 | Copula RNN with HT | 0.7666 | 0.7734 | 0.8052 |
2 | Copula RNN with HT (Perturbed) | 0.8864 | 0.8736 | 0.8982 |
3 | Copula RNN with IPTW | 0.5945 | 0.5789 | 0.5943 |
4 | Copula RNN with IPTW (Perturbed) | 0.6561 | 0.6543 | 0.6581 |
5 | PSM | 1.0256 | 0.9628 | 1.0945 |
6 | PSM (Perturbed) | 1.0650 | 0.9884 | 1.1468 |
7 | Logistic Regression | 0.0704 | 0.0751 | 0.0888 |
8 | Logistic Regression (Perturbed) | 0.0820 | 0.0736 | 0.0897 |
9 | Causal Forests | 0.1611 | 0.1459 | 0.1758 |
10 | Causal Forests (Perturbed) | 0.1560 | 0.1414 | 0.1711 |
Age | Sex | Race | Priors_Count | Decile_Score | |
---|---|---|---|---|---|
age | 1.0000 | 0.0095 | 0.1291 | 0.1296 | −0.3766 |
sex | 0.0095 | 1.0000 | −0.0172 | 0.1213 | 0.0508 |
race | 0.1291 | −0.0172 | 1.0000 | −0.1954 | −0.3094 |
priors_count | 0.1296 | 0.1213 | −0.1954 | 1.0000 | 0.4240 |
decile_score | −0.3766 | 0.0508 | −0.3094 | 0.4240 | 1.0000 |
Method | Estimate | LowerCI | UpperCI |
---|---|---|---|
Copula RNN with HT | 4.2055 | 4.2009 | 4.2105 |
PSM | 5.4868 | 5.4267 | 5.5488 |
Logistic Regression | 0.0612 | 0.0595 | 0.0627 |
Causal Forests | 0.0031 | 0.0029 | 0.0034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-M. Treatment Effect Estimation in Survival Analysis Using Copula-Based Deep Learning Models for Causal Inference. Axioms 2025, 14, 458. https://doi.org/10.3390/axioms14060458
Kim J-M. Treatment Effect Estimation in Survival Analysis Using Copula-Based Deep Learning Models for Causal Inference. Axioms. 2025; 14(6):458. https://doi.org/10.3390/axioms14060458
Chicago/Turabian StyleKim, Jong-Min. 2025. "Treatment Effect Estimation in Survival Analysis Using Copula-Based Deep Learning Models for Causal Inference" Axioms 14, no. 6: 458. https://doi.org/10.3390/axioms14060458
APA StyleKim, J.-M. (2025). Treatment Effect Estimation in Survival Analysis Using Copula-Based Deep Learning Models for Causal Inference. Axioms, 14(6), 458. https://doi.org/10.3390/axioms14060458