Asymptotic Growth of Moduli of m-th Derivatives of Algebraic Polynomials in Weighted Bergman Spaces on Regions Without Zero Angles
Abstract
:1. Introduction
2. The Regions
3. Main Results
4. Some Auxiliary Results
- (a)
- The statements and are equivalent. So are and
- (b)
- If then
5. Proof of Theorems
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, J.L. Interpolation and Approximation by Rational Functions in the Complex Domain; Amer. Math. Soc.: Providence, RI, USA, 1960. [Google Scholar]
- Hille, E.; Szegö, G.; Tamarkin, J.D. On some generalization of a theorem of A. Markoff. Duke Math. J. 1937, 3, 729–739. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Özkartepe, P. On the growth of algebraic polynomials in the whole complex plane. J. Korean Math. Soc. 2015, 52, 699–725. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Aral, D.N. On the Bernstein-Walsh type Lemmas in regions of the complex plane. Ukr. Math.J. 2011, 63, 337–350. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Özkartepe, P. An analogue of the Bernstein-Walsh lemma in Jordan regions of the complex plane. J. Ineq. Appl. 2013, 2013, 570. [Google Scholar] [CrossRef]
- Stylianopoulos, N. Strong asymptotics for Bergman polynomials over domains with corners and applications. Const. Approx. 2012, 38, 59–100. [Google Scholar] [CrossRef]
- Suetin, P.K. Polynomials Orthogonal over the Region and Bieberbach Polynomial; Amer. Math. Soc.: Providence, RI, USA, 1974. [Google Scholar]
- Gaier, D. On the convergence of the Bieberbach polynomials in regions with corners. Const. Approx. 1988, 4, 289–305. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Andrievskii, V.V. On the orthogonal polynomials in the domains with K-quasiconformal boundary. Izv. Akad. Nauk Azerb. SSR. Ser. FTM 1983, 4, 3–7. (In Russian) [Google Scholar]
- Abdullayev, F.G. Uniform convergence of the generalized Bieberbach polynomials in regions with non zero angle. Acta Math. Hung. 1997, 77, 223–246. [Google Scholar] [CrossRef]
- Abdullayev, F.G. Bernstein-Walsh-type inequalities for derivatives of algebraic polynomials in quasidiscs. OPEN Math. 2021, 19, 1847–1876. [Google Scholar] [CrossRef]
- Özkartepe, P.; Gün, C.D.; Abdullayev, F.G. Bernstein-Walsh-type inequalities for derivatives of algebraic polynomials on the regions of complex plane. Turk. J. Math. 2022, 46, 2572–2609. [Google Scholar] [CrossRef]
- Dzjadyk, V.K. Introduction to the Theory of Uniform Approximation of Function by Polynomials; Nauka: Moskow, Russia, 1977. (In Russian) [Google Scholar]
- Dzyadyk, V.K.; Shevchuk, I.A. Theory of Uniform Approximation of Functions by Polynomials, 1st ed.; Walter de Gruyter: Berlin, NY, USA, 2008. [Google Scholar]
- Abdullayev, F.G.; Özkartepe, P. On the behavior of the algebraic polynomial in unbounded regions with piecewise dini-smooth boundary. Ukr. Math. J. 2014, 66, 645–665. [Google Scholar] [CrossRef]
- Özkartepe, P. Pointwise Bernstein-Walsh-Type inequalities in regions with piecewise Dini-smooth boundary. MANAS J. Eng. 2017, 5, 35–47. [Google Scholar]
- Abdullayev, F.G.; Abdullayev, G.A.; Şimşek, D. Bernstein-Walsh-type polynomial inequalities in regions bounded by piecewise asymptotically conformal curve with interior nonzero angles in the Bergman space. Ukr. Math. J. 2019, 71, 663–676. [Google Scholar] [CrossRef]
- Özkartepe, P. Uniform and Pointwise Polynomial Inequalities in Regions with Asymptotically Conformal Curve. MANAS J. Eng. 2018, 6, 26–44. [Google Scholar]
- Gün, C.D. On some inequalities for derivatives of algebraic polynomials in unbounded regions with angles. MANAS J. Eng. 2021, 9, 93–103. [Google Scholar] [CrossRef]
- Bernstein, S.N. Sur la limitation des derivees des polynomes. C. R. Acad. Sci. Paris 1930, 190, 338–341. [Google Scholar]
- Szegö, G.; Zygmund, A. On certain mean values of polynomials. J. Anal. Math. 1953, 3, 225–244. [Google Scholar] [CrossRef]
- Bernstein, S.N. O nailuchshem problizhenii nepreryvnykh funktsii posredstrvom mnogochlenov dannoi stepeni. Sobr. Sochinenii 1912, 1, 11–104, Reprinted in On the Best Approximation of Continuos Functions by Polynomials of Given Degree; Izd. Akad. Nauk SSSR: Moskow, Russia, 1952; Volume 1. [Google Scholar]
- Mamedhanov, D.I. Inequalities of S.M.Nikol’skii type for polynomials in the complex variable on curves. Soviet Math. Dokl. 1974, 15, 34–37. [Google Scholar]
- Milovanovic, G.V.; Mitrinovic, D.S.; Rassias, T.M. Topics in Polynomials: Extremal Problems, Inequalities, Zeros; World Scientific: Singapore, 1994. [Google Scholar]
- Nevai, P.; Totik, V. Sharp Nikolskii inequalities with exponential weights. Anal. Math. 1987, 13, 261–267. [Google Scholar] [CrossRef]
- Nikol’skii, S.M. Approximation of Function of Several Variable and Imbeding Theorems; Springer: New York, NY, USA, 1975. [Google Scholar]
- Abdullayev, F.G.; Özkartepe, P. Polynomial inequalities in Lavrentiev regions with interior and exterior zero angles in the weighted Lebesgue space. Publ. l’Institut Math. 2016, 100, 209–227. [Google Scholar] [CrossRef]
- Ditzian, Z.; Prymak, A. Nikol’skii inequalities for Lorentz space. Rocky Mt J. Math. 2010, 40, 209–223. [Google Scholar] [CrossRef]
- Andrievskii, V.V. Weighted polynomial inequalities in the Complex plane. J. Approx. Theory 2012, 164, 1165–1183. [Google Scholar] [CrossRef]
- Halan, V.D.; Shevchuk, I.O. Exact Constant in Dzyadyk’s Inequality for the Derivative of an Algebraic Polynomial. Ukr. Math. J. 2017, 69, 725–733. [Google Scholar] [CrossRef]
- Pritsker, I. Comparing Norms of Polynomials in One and Several Variables. Math. Anal. Appl. 1997, 216, 685–695. [Google Scholar] [CrossRef]
- Abdullayev, G.A.; Abdullayev, F.G.; Taylakova, A. Polynomial inequalities in regions bounded by piecewise asymptotically conformal curve with nonzero angles in the Bergman space. Adv. Anal. 2018, 3, 143–153. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Gün, C.D. Bernstein-Nikolskii-type inequalities for algebraic polynomials in Bergman space in regions of complex plane. Ukr. Math. J. 2021, 73, 513–531. [Google Scholar] [CrossRef]
- Balcı, S.; Imashkyzy, M.; Abdullayev, F.G. Polynomial inequalities in regions with interior zero angles in the Bergman space. Ukr. Math. J. 2018, 70, 362–384. [Google Scholar] [CrossRef]
- Özkartepe, P. Inequalities of the Markov–Nikol’skii type in regions with zero interior angles in the Bergman space. Ukr. Math. J. 2023, 75, 419–438. [Google Scholar] [CrossRef]
- Lehto, O.; Virtanen, K.I. Quasiconformal Mapping in the Plane; Springer: Berlin/Heidelberg, Germany, 1973. [Google Scholar]
- Rickman, S. Characterisation of quasiconformal arcs. Ann. Fenn. Math. 1966, 395, 30. [Google Scholar] [CrossRef]
- Ahlfors, L.V. Lectures on Quasiconformal Mappings, 1st ed.; D. Van Nostrand Company, Inc.: Princeton, NJ, USA, 1966. [Google Scholar]
- Pommerenke, C. Boundary Behaviour of Conformal Maps; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Becker, J.; Pommerenke, C. Uber die quasikonforme Fortsetzung schlichten Funktionen. Math. Z. 1978, 161, 69–80. [Google Scholar] [CrossRef]
- Anderson, J.M.; Gehring, F.W.; Hinkkanen, A. Polynomial approximation in quasidisks. In Differential Geometry and Complex Analysis; Chavel, I., Farkas, H.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 75–86. [Google Scholar] [CrossRef]
- Dyn’kin, E.M. Nonanalytic symmetry principle and conformal mappings. St. Petersburg Math. J. 1994, 5, 523–544. [Google Scholar]
- Gutlyanskii, V.; Ryazanov, V. On asymptotically conformal curves. Complex Var. 1994, 25, 357–366. [Google Scholar] [CrossRef]
- Pommerenke, C.; Warschawski, S.E. On the quantitative boundary behavior of conformal maps. Comment. Math. Helv. 1982, 57, 107–129. [Google Scholar] [CrossRef]
- Anderson, J.M.; Hinkkanen, A. The rectifiability of certain quasicircles. Complex Var. Theory Appl. 1987, 8, 145–152. [Google Scholar] [CrossRef]
- Belinskii, P.P. General Properties of Quasiconformal Mappings; Nauka, Sib. otd.: Novosibirsk, Russia, 1974. (In Russian) [Google Scholar]
- Lesley, F.D. Hölder continuity of conformal mappings at the boundary via the strip method. Indiana Univ. Math. J. 2001, 31, 341–354. [Google Scholar] [CrossRef]
- Lesley, F.D. On interior and exterior conformal mappings of the disk. J. London Math. Soc. 1979, I, 67–78. [Google Scholar] [CrossRef]
- Abdullayev, F.G. On the some properties of the orthogonal polynomials over the region of the complex plane (Part I). Ukr. Math. J. 2000, 52, 1807–1821. [Google Scholar] [CrossRef]
- Andrievskii, V.V.; Belyi, V.I.; Dzyadyk, V.K. Conformal Invariants in Constructive Theory of Functions of Complex Plane; World Federation Publ. Com.: Atlanta, GA, USA, 1995. [Google Scholar]
- Abdullayev, F.G. On the some properties of the orthogonal polynomials over the region of the complex plane (Part III). Ukr. Math. J. 2001, 53, 1934–1948. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Değer, U.; Imashkyzy, M.; Abdullayev, F.G. Asymptotic Growth of Moduli of m-th Derivatives of Algebraic Polynomials in Weighted Bergman Spaces on Regions Without Zero Angles. Axioms 2025, 14, 380. https://doi.org/10.3390/axioms14050380
Değer U, Imashkyzy M, Abdullayev FG. Asymptotic Growth of Moduli of m-th Derivatives of Algebraic Polynomials in Weighted Bergman Spaces on Regions Without Zero Angles. Axioms. 2025; 14(5):380. https://doi.org/10.3390/axioms14050380
Chicago/Turabian StyleDeğer, Uğur, Meerim Imashkyzy, and Fahreddin G. Abdullayev. 2025. "Asymptotic Growth of Moduli of m-th Derivatives of Algebraic Polynomials in Weighted Bergman Spaces on Regions Without Zero Angles" Axioms 14, no. 5: 380. https://doi.org/10.3390/axioms14050380
APA StyleDeğer, U., Imashkyzy, M., & Abdullayev, F. G. (2025). Asymptotic Growth of Moduli of m-th Derivatives of Algebraic Polynomials in Weighted Bergman Spaces on Regions Without Zero Angles. Axioms, 14(5), 380. https://doi.org/10.3390/axioms14050380