Investigating the Hyers–Ulam Stability of the Generalized Drygas Functional Equation: New Results and Methods
Abstract
:1. Introduction and Preliminaries
2. The Stability of the Generalized Drygas Function Equation
3. The Stability of the Generalized Drygas Function Inequation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Găvruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Aiemsomboon, L.; Sintunavarat, W. Stability of the generalized logarithmic functional equations arising from fixed point theory. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2018, 112, 229–238. [Google Scholar] [CrossRef]
- Alessa, N.; Tamilvanan, K.; Balasubramanian, G.; Loganathan, K. Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Math. 2021, 6, 2385–2397. [Google Scholar] [CrossRef]
- Cho, Y.; Park, C.; Saadati, R. Functional inequalities in non-Archimedean Banach spaces. Appl. Math. Lett. 2010, 23, 1238–1242. [Google Scholar] [CrossRef]
- Cho, Y.; Saadati, R.; Yang, Y. Approximation of homomorphisms and derivations on Lie C*-algebras via fixed point method. J. Inequal. Appl. 2013, 2013, 415. [Google Scholar] [CrossRef]
- Lu, G.; Liu, Q.; Jin, Y.; Xie, J. 3-Variable Jensen ρ-functional equations. J. Nonlinear Sci. Appl. 2016, 9, 5995–6003. [Google Scholar] [CrossRef]
- Lu, G.; Park, C. Hyers-Ulam stability of additive set-valued functional equations. Appl. Math. Lett. 2011, 24, 1312–1316. [Google Scholar] [CrossRef]
- Lu, G.; Park, C. Hyers-Ulam stability of general Jensen-type mappings in Banach algebras. Results Math. 2014, 66, 385–404. [Google Scholar] [CrossRef]
- Park, C.; Cho, Y.; Han, M. Functional inequalities associated with Jordan-von-Neumann-type additive functional equations. J. Inequal. Appl. 2007, 2007, 41820. [Google Scholar] [CrossRef]
- Wang, Z. Stability of two types of cubic fuzzy set-valued functional equations. Results Math. 2016, 70, 1–14. [Google Scholar] [CrossRef]
- Brzdek, J.; Popa, D.; Rassias, T.M. (Eds.) Ulam Type Stability; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Cho, Y.; Rassias, T.M.; Saadati, R. Stability of Functional Equations in Random Normed Spaces; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kannappan, P. Functional Equations and Inequalities with Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Jung, S.M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Sahoo, K.; Kannappan, P. Introduction to Functional Equations; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Lee, H.; Jung, S.M.; Rassias, M.T. Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation. J. Math. Inequal. 2018, 12, 43–61. [Google Scholar] [CrossRef]
- Lee, H.; Jung, S.M.; Rassias, M.T. On an n-dimensional mixed type additive and quadratic functional equation. Appl. Math. Comput. 2014, 228, 13–16. [Google Scholar] [CrossRef]
- Alinejad, A.; Khodaei, H.; Rassias, M.T.; Vosoughian, H. A functional equation related to inner product spaces in Serstnev probabilistic normed spaces. In Mathematical Analysis, Differential Equations and Applications; World Scientific Publ. Co.: Singapore, 2024; pp. 77–96. [Google Scholar]
- Bahyrycz, A.; Sikorska, J. On a General n-Linear Functional Equation. Results Math. 2022, 77, 128. [Google Scholar] [CrossRef]
- Mohammadpour, J.; Najati, A.; Rassias, M.T. Some results on stability of a general functional equation in m-Banach spaces. Results Math. 2024, 79, 284. [Google Scholar] [CrossRef]
- Girgin, E.; Büyükkaya, A.; Kuru, N.K.; Younis, M.; Öztürk, M. Analysis of Caputo-Type Non-Linear Fractional Differential Equations and Their Ulam–Hyers Stability. Fractal Fract. 2024, 8, 558. [Google Scholar] [CrossRef]
- Murali, R.; Selvan, A.P.; Baskaran, S.; Park, C.; Rassias, M.T. Aboodh transform and Ulam stability of second-order linear differential equations. In Mathematical Analysis, Differential Equations and Applications; World Scientific Publ. Co.: Singapore, 2024; pp. 587–616. [Google Scholar]
- Trif, T. On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions. J. Math. Anal. Appl. 2002, 272, 604–616. [Google Scholar] [CrossRef]
- Drygas, H. Quasi-inner products and their applications. In Advances in Multivariate Statistical Analyis; Theory and Decision Library Series B: Mathematical and Statistical Methods; Springer: Dordrecht, The Netherlands, 1987; pp. 13–30. [Google Scholar]
- Ebanks, B.R.; Kannappan, P.L.; Sahoo, P.K. A common generaliztion of functional equations charactering normed and quasi-inner-product spaces. Canad. Math. Bull. 1992, 35, 321–327. [Google Scholar] [CrossRef]
- Rassias, T.M.; Tabor, J. What is left of Hyers-Ulam stability? J. Nat. Geom. 1992, 1, 65–69. [Google Scholar]
- Aiemsomboon, L.; Sintunavarat, W. Two new generalised hyperstability results for the Drygas functional equation. Bull. Aust. Math. Soc. 2017, 95, 269–280. [Google Scholar] [CrossRef]
- El-Fassi, I. Generalized hyperstability of a Drygas functional equation on a restricted domain using Brzdek’s fixed point theorem. J. Fixed Point Theory Appl. 2017, 19, 2529–2540. [Google Scholar] [CrossRef]
- Forti, G.L. Stability of quadratic and Drygas functional equations with an application for solving alternative quadratic equation. In Handbook of Functional Equations; Rassias, T.M., Ed.; Springer Optimization and Its Applications; Springer: New York, NY, USA, 2014; Volume 96, pp. 155–179. [Google Scholar]
- Jin, Z.; Wu, J. Ulam stability of some fuzzy number-valued functional equations and Drygas type functional equation. J. Southwest Univ. 2018, 4, 59–66. [Google Scholar]
- Jung, S.; Sahoo, P.K. Stability of a functional equation of Drygas. Aequationes Math. 2002, 64, 263–273. [Google Scholar] [CrossRef]
- Piszczek, M.; Szczawińska, J. Stability of the Drygas functional equation on restricted domain. Results Math. 2015, 68, 11–24. [Google Scholar] [CrossRef]
- Sikorska, J. On a direct method for proving the Hyers-Ulam stability of functional equations. J. Math. Anal. Appl. 2010, 372, 99–109. [Google Scholar] [CrossRef]
- Smajdor, W. On set-valued solutions of a functional equation of Drygas. Aequationes Math. 2009, 77, 89–97. [Google Scholar] [CrossRef]
- Yang, D. Remarks on the stability of Drygas equation and the Pexider quadratic equation. Aequationes Math. 2004, 68, 108–116. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Chudziak, J.; Páles, Z. A fixed point approach to stability of functional equations. Nonlinear Anal. 2011, 74, 6728–6732. [Google Scholar] [CrossRef]
- Cădariu, L.; Găvruta, L.; Gxaxvruta, P. Fixed points and generalized Hyers-Ulam stability. Abstr. Appl. Anal. 2012, 2012, 712743. [Google Scholar]
- Ciepliński, K. Applications of fixed point theorems to the Hyers-Ulam stability of functional equations—A survey. Ann. Funct. Anal. 2012, 3, 151–164. [Google Scholar] [CrossRef]
- Park, C. Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory Appl. 2007, 2007, 50175. [Google Scholar] [CrossRef]
- Park, C. Additive-functional inequalities and equations. J. Math. Inequal. 2015, 9, 17–26. [Google Scholar] [CrossRef]
- Choi, J.; Seong, J.; Park, C. Additive ρ-functional inequalities in normed spaces. J. Nonlinear Sci. Appl. 2016, 9, 247–253. [Google Scholar] [CrossRef]
- Nawaz, S.; Bariq, A.; Batool, A.; Akgül, A. Generalized Hyers–Ulam stability of ρ-functional inequalities. J. Inequal. Appl. 2023, 2023, 135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, G.; Liu, Y.; Jin, Y.; Jiang, Y. Investigating the Hyers–Ulam Stability of the Generalized Drygas Functional Equation: New Results and Methods. Axioms 2025, 14, 315. https://doi.org/10.3390/axioms14040315
Lyu G, Liu Y, Jin Y, Jiang Y. Investigating the Hyers–Ulam Stability of the Generalized Drygas Functional Equation: New Results and Methods. Axioms. 2025; 14(4):315. https://doi.org/10.3390/axioms14040315
Chicago/Turabian StyleLyu, Gang, Yang Liu, Yuanfeng Jin, and Yingxiu Jiang. 2025. "Investigating the Hyers–Ulam Stability of the Generalized Drygas Functional Equation: New Results and Methods" Axioms 14, no. 4: 315. https://doi.org/10.3390/axioms14040315
APA StyleLyu, G., Liu, Y., Jin, Y., & Jiang, Y. (2025). Investigating the Hyers–Ulam Stability of the Generalized Drygas Functional Equation: New Results and Methods. Axioms, 14(4), 315. https://doi.org/10.3390/axioms14040315