Positive Solutions for Discrete Robin Problem of Kirchhoff Type Involving p-Laplacian
Abstract
:1. Introduction
2. Preliminaries
- (A1)
- for where are two continuous functions of the class on X and Φ is coercive, which means that
- (A2)
- is convex and
- (A3)
- If and are local minima for the functional such that and , then
- (i)
- ;
- (ii)
- .
- (i)
- (ii)
- For each the functional is coercive.
3. Main Results
- (A)
- (N1)
- for each
- (N2)
- (N3)
- There exists a non-negative constant β with
- (H1)
- (H2)
- (H3)
- There is a positive constant β such that
4. Examples
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, R.P. Difference Equations and Inequalities: Theory, Methods, and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Zheng, B.; Yu, J.; Li, J. Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression. SIAM J. Appl. Math. 2021, 81, 718–740. [Google Scholar] [CrossRef]
- Yu, J.; Li, J. Discrete-time models for interactive wild and sterile mosquitoes with general time steps. Math. Biosci. 2022, 346, 108797. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, Q. Stabilization of stochastic highly nonlinear delay systems with neutral term. IEEE Trans. Autom. Control 2023, 68, 2544–2551. [Google Scholar] [CrossRef]
- Zheng, B.; Li, J.; Yu, J. One discrete dynamical model on the Wolbachia infection frequency in mosquito populations. Sci. China Math. 2021, 65, 1749–1764. [Google Scholar] [CrossRef]
- Zheng, B.; Yu, J. Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency. Adv. Nonlinear Anal. 2021, 11, 212–224. [Google Scholar] [CrossRef]
- El-Metwally, H.; Yalcinkaya, I.; Cinar, C. Global stability of an economic model. Util. Math. 2014, 95, 235–244. [Google Scholar]
- Long, Y.; Wang, S. Multiple solutions for nonlinear functional difference equations by the invariant sets of descending flow. J. Differ. Equ. Appl. 2019, 25, 1768–1789. [Google Scholar] [CrossRef]
- Bereanu, C.; Mawhin, J. Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ. J. Differ. Equ. Appl. 2008, 14, 1099–1118. [Google Scholar] [CrossRef]
- He, Z. On the existence of positive solutions of p-Laplacian difference equations. J. Comput. Appl. Math. 2003, 161, 193–201. [Google Scholar] [CrossRef]
- Rao, R.; Lin, Z.; Ai, X.; Wu, J. Synchronization of epidemic systems with Neumann boundary value under delayed impulse. Mathematics 2022, 10, 2064. [Google Scholar] [CrossRef]
- Henderson, J.; Thompson, H. Existence of multiple solutions for second-order discrete boundary value problems. Comput. Math. Appl. 2002, 43, 1239–1248. [Google Scholar] [CrossRef]
- Jiang, D.; O’Regan, D.; Agarwal, R.P. A generalized upper and lower solution method for singular discrete boundary value problems for the one-dimensional p-Laplacian. J. Appl. Anal. 2005, 11, 35–47. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Guan, Y.; Li, W. Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Math. Biosci. Eng. 2023, 20, 7020–7041. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.S.; Yu, Z.M. Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China Ser. A Math. 2003, 46, 506–515. [Google Scholar] [CrossRef]
- Ling, J.; Zhou, Z. Positive solutions of the discrete Robin problem with ϕ-Laplacian. Discrete Contin. Dyn. Syst. Ser. S 2021, 14, 3183–3196. [Google Scholar]
- Bonanno, G.; Candito, P. Infinitely many solutions for a class of discrete nonlinear boundary value problems. Int. J. Control 2009, 88, 605–616. [Google Scholar]
- Zhou, Z.; Ling, J. Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕc-Laplacian. Appl. Math. Lett. 2019, 91, 28–34. [Google Scholar] [CrossRef]
- D’Aguì, G.; Mawhin, J.; Sciammetta, A. Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian. J. Math. Anal. Appl. 2017, 447, 383–397. [Google Scholar] [CrossRef]
- Campìtı, M. Second-order differential operators with non-local Ventcel’s boundary conditions. Constr. Math. Anal. 2019, 2, 144–152. [Google Scholar] [CrossRef]
- Kuang, J.; Chen, W.; Guo, Z. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Commun. Pure Appl. Anal. 2022, 21, 47. [Google Scholar] [CrossRef]
- Kuang, J.; Guo, Z. Periodic solutions with prescribed minimal period for second-order Hamiltonian systems with non-symmetric potentials. Appl. Math. Lett. 2024, 155, 109123. [Google Scholar] [CrossRef]
- Mei, P.; Zhou, Z. Homoclinic solutions for partial difference equations with mixed nonlinearities. J. Geom. Anal. 2023, 33, 117. [Google Scholar] [CrossRef]
- Mei, P.; Zhou, Z. Homoclinic solutions of discrete prescribed mean curvature equations with mixed nonlinearities. Appl. Math. Lett. 2022, 130, 108006. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Z. Heteroclinic solutions for a difference equation involving the mean curvature operator. Appl. Math. Lett. 2024, 147, 108827. [Google Scholar] [CrossRef]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Yang, Y.; Zhang, J. Nontrivial solutions of a class of nonlocal problems via local linking theory. Appl. Math. Lett. 2010, 23, 377–380. [Google Scholar] [CrossRef]
- Tang, X.H.; Cheng, B. Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 2016, 261, 2384–2402. [Google Scholar] [CrossRef]
- Cheng, B. New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems. J. Math. Anal. Appl. 2012, 394, 488–495. [Google Scholar] [CrossRef]
- Heidarkhani, S.; Afrouzi, G.A.; O’Regan, D.O.N.A.L. Existence of three solutions for a Kirchhoff-type boundary-value problem. Electron. J. Differ. Equ. 2011, 2011, 1–11. [Google Scholar]
- Ricceri, B. On a three critical points theorem. Arch. Math. 2000, 75, 220–226. [Google Scholar] [CrossRef]
- Ricceri, B. A three critical points theorem revisited. Nonlinear Anal. Theory Methods Appl. 2009, 70, 3084–3089. [Google Scholar] [CrossRef]
- Ricceri, B. A further three critical points theorem. Nonlinear Anal. Theory Methods Appl. 2009, 71, 4151–4157. [Google Scholar] [CrossRef]
- Mugnai, D.; Pagliardini, D. Existence and multiplicity results for the fractional Laplacian in bounded domains. Adv. Calc. Var. 2017, 10, 111–124. [Google Scholar] [CrossRef]
- Long, Y.; Deng, X. Existence and multiplicity solutions for discrete Kirchhoff type problems. Appl. Math. Lett. 2022, 126, 107817. [Google Scholar] [CrossRef]
- Bonanno, G.; Candito, P. Multiple solutions for a discrete boundary value problem involving p-Laplacian. Comput. Math. Appl. 2008, 56, 959–964. [Google Scholar]
- Afrouzi, G.A.; Heidarkhani, S. Three solutions for a Dirichlet boundary value problem involving the p-Laplacian. Nonlinear Anal. Theory Methods Appl. 2007, 66, 2281–2288. [Google Scholar] [CrossRef]
- Xiong, F. Infinitely many solutions for partial discrete Kirchhoff type problems involving p-Laplacian. Mathematics 2023, 11, 3288. [Google Scholar] [CrossRef]
- Heidarkhani, S.; Afrouzi, G.A.; Henderson, J.; Moradi, S.; Caristi, G. Variational approaches to p-Laplacian discrete problems of Kirchhoff-type. J. Differ. Equ. Appl. 2017, 23, 917–938. [Google Scholar] [CrossRef]
- Heidarkhani, S.; Ghobadi, A.; Caristi, G. Critical point approaches for discrete anisotropic Kirchhoff type problems. Adv. Appl. Math. 2022, 13, 58–65. [Google Scholar] [CrossRef]
- Bonanno, G.; Candito, P. Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities. J. Differ. Equ. 2008, 244, 3031–3059. [Google Scholar] [CrossRef]
- Bonanno, G.; Candito, P.; D’Aguì, G. Variational methods on finite dimensional Banach spaces and discrete problems. Adv. Nonlinear Stud. 2014, 14, 915–939. [Google Scholar] [CrossRef]
- Bonanno, G.; D’Aguì, G. Two non-zero solutions for elliptic Dirichlet problems. Z. Anal. Anwend. 2016, 35, 449–464. [Google Scholar] [CrossRef]
- Galewski, M.; Wieteska, R. Existence and multiplicity of positive solutions for discrete anisotropic equations. Turk. J. Math. 2014, 38, 297–310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhou, Z. Positive Solutions for Discrete Robin Problem of Kirchhoff Type Involving p-Laplacian. Axioms 2025, 14, 285. https://doi.org/10.3390/axioms14040285
Chen Z, Zhou Z. Positive Solutions for Discrete Robin Problem of Kirchhoff Type Involving p-Laplacian. Axioms. 2025; 14(4):285. https://doi.org/10.3390/axioms14040285
Chicago/Turabian StyleChen, Zhi, and Zhan Zhou. 2025. "Positive Solutions for Discrete Robin Problem of Kirchhoff Type Involving p-Laplacian" Axioms 14, no. 4: 285. https://doi.org/10.3390/axioms14040285
APA StyleChen, Z., & Zhou, Z. (2025). Positive Solutions for Discrete Robin Problem of Kirchhoff Type Involving p-Laplacian. Axioms, 14(4), 285. https://doi.org/10.3390/axioms14040285