A Robust Framework for Probability Distribution Generation: Analyzing Structural Properties and Applications in Engineering and Medicine
Abstract
:1. Introduction
2. ASP Method
- ;
- is a monotonic increasing function of x
- is right continuous
3. ASP Rayleigh Distribution (ASPRD)
- Case 1: As
- Case 2: As
- Case 1: As
- Case 2: As
4. Expanded Forms of the Model
5. Statistical Properties of ASPRD
5.1. Moments
5.2. Moment Generating Function (MGF) of ASPRD
5.3. Conditional Moments and Associated Measures
5.3.1. Lorenz and Bonferroni Inequality Curves
5.3.2. Conditional Moment and Reversed Conditional Moment of ASPRD
5.3.3. Mean Residual Life (MRL) and Mean Waiting Time (MWT)
5.4. Renyi Entropy
5.5. Order Statistics of ASPRD
6. Estimation
6.1. Maximum Likelihood Estimation (MLE)
6.2. Least Square Estimation (LSE) and Weighted Least Square Estimation (WLSE)
6.3. Maximum Product of Spacings Estimation (MPSE)
7. Simulated Analysis
- All estimators analyzed in this research demonstrate the property of consistency. This suggests that as the sample size (n) rises, the estimators converge to the true parameter values.
- Regardless of the estimation approach employed, the bias of all estimators diminishes as sample size (n) grows. This suggests that larger sample sizes yield more precise estimates with reduced systematic errors.
- For all estimation strategies, the MSE of the estimates decreases as n increases. This implies that larger sample sizes improve the precision of the estimates by minimizing random and systematic errors.
- Regardless of the estimation approach utilized, the RMSE of all estimators decreases as n increases. This indicates that higher sample numbers lead to more precise approximations as the relative error gradually decreases.
8. Application
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar]
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika 2005, 92, 505. [Google Scholar]
- Odhah, O.H.; Alshanbari, H.M.; Ahmad, Z.; Khan, F.; El-Bagoury, A.a.A.H. A New Family of Distributions Using a Trigonometric Function: Properties and Applications in the Healthcare Sector. Heliyon 2024, 10, e29861. [Google Scholar]
- Shah, Z.; Khan, D.M.; Khan, I.; Ahmad, B.; Jeridi, M.; Al-Marzouki, S. A novel flexible exponent power-X family of distributions with applications to COVID-19 mortality rate in Mexico and Canada. Sci. Rep. 2024, 14, 8992. [Google Scholar]
- Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2013, 71, 63–79. [Google Scholar]
- Mahdavi, A.; Kundu, D. A new method for generating distributions with an application to exponential distribution. Commun. Stat. Theory Methods 2017, 46, 6543–6557. [Google Scholar]
- Kumar, D.; Singh, U.; Singh, S.K. A new distribution using sine function-its application to bladder cancer patients data. J. Stat. Appl. Probab. 2015, 4, 417. [Google Scholar]
- Muhammad, M.; Alshanbari, H.M.; Alanzi, A.R.; Liu, L.; Sami, W.; Chesneau, C.; Jamal, F. A new generator of probability models: The exponentiated sine-G family for lifetime studies. Entropy 2021, 23, 1394. [Google Scholar] [CrossRef]
- Oramulu, D.O.; Alsadat, N.; Kumar, A.; Bahloul, M.M.; Obulezi, O.J. Sine generalized family of distributions: Properties, estimation, simulations and applications. Alex. Eng. J. 2024, 109, 532–552. [Google Scholar]
- Isa, A.; Ali, B.; Zannah, U. Sine burr xii distribution: Properties and application to real data sets. Arid. Zone J. Basic Appl. Res. 2022, 1, 48–58. [Google Scholar]
- Faruk, M.U.; Isa, A.M.; Kaigama, A. Sine-Weibull Distribution: Mathematical Properties and Application to Real Datasets. Reliab. Theory Appl. 2024, 19, 65–72. [Google Scholar]
- Mir, A.A.; Ahmad, S. Modeling and Analysis of Sine Power Rayleigh Distribution: Properties and Applications. Reliab. Theory Appl. 2024, 19, 703–716. [Google Scholar] [CrossRef]
- Mahmood, Z.; Chesneau, C.; Tahir, M.H. A new sine-G family of distributions: Properties and applications. Bull. Comput. Appl. Math. 2019, 7, 53–81. [Google Scholar]
- Al-Babtain, A.A.; Elbatal, I.; Chesneau, C.; Elgarhy, M. Sine Topp-Leone-G family of distributions: Theory and applications. Open Phys. 2020, 18, 574–593. [Google Scholar]
- Tomy, L.; Chesneau, C. The sine modified Lindley distribution. Math. Comput. Appl. 2021, 26, 81. [Google Scholar] [CrossRef]
- Ahmad, A.; Alsadat, N.; Atchade, M.N.; ul Ain, S.Q.; Gemeay, A.M.; Meraou, M.A.; Almetwally, E.M.; Hossain, M.M.; Hussam, E. New hyperbolic sine-generator with an example of Rayleigh distribution: Simulation and data analysis in industry. Alex. Eng. J. 2023, 73, 415–426. [Google Scholar]
- Chesneau, C.; Jamal, F. The sine Kumaraswamy-G family of distributions. J. Math. Ext. 2020, 15, 1–33. [Google Scholar]
- Osi, A.A.; Abubakar, U.; Isma’Il, L.A. Sine generalized odd log-logistic family of distributions: Properties and application to real data. Reliab. Theory Appl. 2024, 19, 190–200. [Google Scholar]
- Ahmadini, A.A.H. Statistical Inference of Sine Inverse Rayleigh Distribution. Comput. Syst. Sci. Eng. 2022, 41, 405–414. [Google Scholar]
- Rayleigh, L. XII. On the Resultant of a Large Number of Vibrations of the Same Pitch and of Arbitrary Phase. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1880, 10, 73–78. [Google Scholar] [CrossRef]
- Surles, J.; Padgett, W. Inference for Reliability and Stress-Strength for a Scaled Burr Type X Distribution. Lifetime Data Anal. 2001, 7, 187–200. [Google Scholar] [CrossRef]
- Kundu, D.; Raqab, M.Z. Generalized Rayleigh Distribution: Different Methods of Estimations. Comput. Stat. Data Anal. 2005, 49, 187–200. [Google Scholar] [CrossRef]
- Kamnge, J.S.; Chacko, M. Half logistic exponentiated inverse Rayleigh distribution: Properties and application to life time data. PLoS ONE 2025, 20, e0310681. [Google Scholar]
- Ogunde, A.A.; Dutta, S.; Almetawally, E.M. Half logistic generalized Rayleigh distribution for modeling hydrological data. In Annals of Data Science; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–28. [Google Scholar]
- Ajami, M.; Jahanshahi, S. Parameter estimation in weighted Rayleigh distribution. J. Mod. Appl. Stat. Methods 2017, 16, 14. [Google Scholar]
- Abdulrahman, A.T.; Rashedi, K.A.; Alshammari, T.S.; Hussam, E.; Alharthi, A.S.; Albayyat, R.H. A new extension of the Rayleigh distribution: Methodology, classical, and Bayes estimation, with application to industrial data. AIMS Math. 2025, 10, 3710–3733. [Google Scholar]
- Kilai, M.; Waititu, G.A.; Kibira, W.A.; Abd El-Raouf, M.; Abushal, T.A. A new versatile modification of the Rayleigh distribution for modeling COVID-19 mortality rates. Results Phys. 2022, 35, 105260. [Google Scholar]
- Mahmood, Z.; Jawa, T.M.; Sayed-Ahmed, N.; Khalil, E.; Muse, A.H.; Tolba, A.H. An extended cosine generalized family of distributions for reliability modeling: Characteristics and applications with simulation study. Math. Probl. Eng. 2022, 2022, 3634698. [Google Scholar]
- Obi, C.D.; Chukwuma, P.O.; Igbokwe, C.P.; Ibeakuzie, P.O.; Anabike, I.C. A Novel Extension of Rayleigh Distribution: Characterization, Estimation, Simulations and Applications. J. Xidian Univ. 2024, 18, 177–188. [Google Scholar]
- Khalaf, A.A.; Khaleel, M.A.; Jawa, T.M.; Sayed-Ahmed, N.; Tolba, A.H. A Novel Extension of the Inverse Rayleigh Distribution: Theory, Simulation, and Real-World Application. Appl. Math. 2025, 19, 467–488. [Google Scholar]
- Muse, A.H.; Tolba, A.H.; Fayad, E.; Abu Ali, O.A.; Nagy, M.; Yusuf, M. Modelling the COVID-19 mortality rate with a new versatile modification of the log-logistic distribution. Comput. Intell. Neurosci. 2021, 2021, 8640794. [Google Scholar]
- Bhat, A.A.; Ahmad, S.P. An Extension of Exponentiated Rayleigh Distribution: Properties and Applications. Thail. Stat. 2023, 21, 209–227. [Google Scholar]
- Anabike, I.C.; Okoro, E.S.; Igbokwe, C.P.; Ibeakuzie, P.O.; Ekemezie, D. New Extended Rayleigh Distribution: Properties, Estimation, Simulation and Application. J. Xidian Univ. 2024, 18, 179–207. [Google Scholar]
- Khaleel, A.H. Reliability Function of (1 Strength and 4 Stresses) for Rayleigh distribution. Basrah J. Sci. 2024, 42, 13–22. [Google Scholar]
- Swain, J.J.; Venkatraman, S.; Wilson, J.R. Least-squares estimation of distribution functions in Johnson’s translation system. J. Stat. Comput. Simul. 1988, 29, 271–297. [Google Scholar] [CrossRef]
- Cheng, R.; Amin, N. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. Ser. Methodol. 1983, 45, 394–403. [Google Scholar]
- Ranneby, B. The maximum spacing method. An estimation method related to the maximum likelihood method. Scand. J. Stat. 1984, 11, 93–112. [Google Scholar]
- Al-Aqtash, R.; Lee, C.; Famoye, F. Gumbel-Weibull distribution: Properties and applications. J. Mod. Appl. Stat. Methods 2014, 13, 11. [Google Scholar]
- Smith, R.L.; Naylor, J. A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. J. R. Stat. Soc. Ser. C Appl. Stat. 1987, 36, 358–369. [Google Scholar]
- Ahmad, A.; Ain, S.Q.U.; Tripathi, R.; Ahmad, A. Inverse Weibull-Rayleigh Distribution Characterisation with Applications Related Cancer Data. Reliab. Theory Appl. 2021, 16, 364–382. [Google Scholar]
- Merovci, F. Transmuted Rayleigh Distribution. Austrian J. Stat. 2013, 42, 21–31. [Google Scholar] [CrossRef]
- Lone, M.A.; Dar, I.H.; Jan, T. An Innovative Method for Generating Distributions: Applied to Weibull Distribution. J. Sci. Res. 2022, 66, 308–315. [Google Scholar] [CrossRef]
- Bhat, A.A.; Ahmad, S.P. A New Generalization of Rayleigh Distribution: Properties and Applications. Pak. J. Stat. 2020, 36, 47–56. [Google Scholar]
Sample Size | Estimate | Parameter | MLE | LSE | WLSE | MPSE |
---|---|---|---|---|---|---|
25 | Bias | 0.02805 | 0.03051 | 0.03364 | 0.02831 | |
0.09298 | 0.09642 | 0.07372 | 0.07422 | |||
MSE | 0.00212 | 0.00149 | 0.00171 | 0.00122 | ||
0.01943 | 0.01527 | 0.00901 | 0.00909 | |||
MRE | 0.11219 | 0.12204 | 0.13454 | 0.11323 | ||
0.12397 | 0.12856 | 0.09831 | 0.09896 | |||
50 | Bias | 0.01125 | 0.02154 | 0.02291 | 0.01879 | |
0.03827 | 0.05474 | 0.04988 | 0.04262 | |||
MSE | 0.00064 | 0.00072 | 0.00075 | 0.00053 | ||
0.00599 | 0.00489 | 0.00438 | 0.00322 | |||
MRE | 0.04501 | 0.08617 | 0.09168 | 0.07517 | ||
0.05103 | 0.07298 | 0.06651 | 0.05682 | |||
75 | Bias | 0.00711 | 0.02062 | 0.01945 | 0.01611 | |
0.02671 | 0.05194 | 0.04021 | 0.03195 | |||
MSE | 0.00026 | 0.00067 | 0.00056 | 0.00041 | ||
0.00381 | 0.00472 | 0.00246 | 0.00182 | |||
MRE | 0.02846 | 0.08246 | 0.07779 | 0.06444 | ||
0.03562 | 0.06925 | 0.05360 | 0.04260 | |||
100 | Bias | 0.00438 | 0.01727 | 0.01374 | 0.01224 | |
0.01752 | 0.03987 | 0.02963 | 0.02242 | |||
MSE | 0.00011 | 0.00048 | 0.00028 | 0.00026 | ||
0.00209 | 0.00259 | 0.00145 | 0.00089 | |||
MRE | 0.01751 | 0.06906 | 0.05497 | 0.04897 | ||
0.02336 | 0.05315 | 0.03951 | 0.02989 | |||
150 | Bias | 0.00068 | 0.01197 | 0.01163 | 0.01004 | |
0.00213 | 0.03204 | 0.02448 | 0.01754 | |||
MSE | 0.00009 | 0.00023 | 0.00021 | 0.00017 | ||
0.00013 | 0.00164 | 0.00096 | 0.00051 | |||
MRE | 0.00274 | 0.04788 | 0.04651 | 0.04017 | ||
0.00285 | 0.04272 | 0.03264 | 0.02339 | |||
250 | Bias | 0.00031 | 0.01059 | 0.00998 | 0.00728 | |
0.00119 | 0.02972 | 0.01799 | 0.01249 | |||
MSE | 0.00007 | 0.00018 | 0.00017 | 0.00010 | ||
0.00011 | 0.00145 | 0.00052 | 0.00024 | |||
MRE | 0.00123 | 0.04235 | 0.03991 | 0.02915 | ||
0.00159 | 0.03963 | 0.02399 | 0.01665 | |||
350 | Bias | 0.00019 | 0.00925 | 0.00701 | 0.00568 | |
0.00089 | 0.02396 | 0.01608 | 0.01189 | |||
MSE | 0.00000 | 0.00013 | 0.00008 | 0.00006 | ||
0.00000 | 0.00088 | 0.00044 | 0.00021 | |||
MRE | 0.00000 | 0.03699 | 0.02805 | 0.02275 | ||
0.00000 | 0.03196 | 0.02144 | 0.01584 |
Sample Size | Estimate | Parameter | MLE | LSE | WLSE | MPSE |
---|---|---|---|---|---|---|
25 | Bias | 1.32625 | 0.35759 | 0.34229 | 0.31972 | |
0.31609 | 0.03433 | 0.02697 | 0.02045 | |||
MSE | 3.35358 | 0.22367 | 0.25568 | 0.18201 | ||
0.10652 | 0.00206 | 0.00165 | 0.00099 | |||
MRE | 0.63155 | 0.17029 | 0.16300 | 0.15225 | ||
0.26341 | 0.02861 | 0.02248 | 0.01705 | |||
50 | Bias | 1.00687 | 0.25018 | 0.23172 | 0.21356 | |
0.30595 | 0.02348 | 0.01664 | 0.01118 | |||
MSE | 1.58685 | 0.09976 | 0.09059 | 0.07347 | ||
0.09641 | 0.00090 | 0.00051 | 0.00025 | |||
MRE | 0.47946 | 0.11914 | 0.11034 | 0.10169 | ||
0.25645 | 0.01957 | 0.01387 | 0.00932 | |||
75 | Bias | 0.98021 | 0.20135 | 0.17713 | 0.16951 | |
0.30586 | 0.01908 | 0.01133 | 0.00808 | |||
MSE | 1.32003 | 0.06645 | 0.05114 | 0.04664 | ||
0.09570 | 0.00061 | 0.00023 | 0.00013 | |||
MRE | 0.46677 | 0.09588 | 0.08435 | 0.08072 | ||
0.25488 | 0.01590 | 0.00944 | 0.00674 | |||
100 | Bias | 0.94272 | 0.17480 | 0.15237 | 0.14242 | |
0.30578 | 0.01569 | 0.00934 | 0.00642 | |||
MSE | 1.13016 | 0.04849 | 0.03667 | 0.03301 | ||
0.09507 | 0.00040 | 0.00015 | 0.00008 | |||
MRE | 0.44891 | 0.08324 | 0.07256 | 0.06782 | ||
0.25481 | 0.01308 | 0.00778 | 0.00535 | |||
150 | Bias | 0.87893 | 0.14396 | 0.12519 | 0.10934 | |
0.30219 | 0.01320 | 0.00709 | 0.00443 | |||
MSE | 0.92882 | 0.03257 | 0.02564 | 0.01914 | ||
0.09239 | 0.00027 | 0.00008 | 0.00003 | |||
MRE | 0.41853 | 0.06856 | 0.05962 | 0.05206 | ||
0.25183 | 0.01100 | 0.00591 | 0.00369 | |||
250 | Bias | 0.86596 | 0.11063 | 0.09879 | 0.08878 | |
0.30203 | 0.01001 | 0.00528 | 0.00350 | |||
MSE | 0.83929 | 0.01927 | 0.01532 | 0.01227 | ||
09186 | 0.00016 | 0.00004 | 0.00002 | |||
MRE | 0.41236 | 0.05268 | 0.04705 | 0.04228 | ||
0.25169 | 0.00834 | 0.00440 | 0.00292 | |||
350 | Bias | 0.83590 | 0.09183 | 0.08192 | 0.07930 | |
0.30063 | 0.00866 | 0.00438 | 0.00289 | |||
MSE | 0.78402 | 0.01355 | 0.01052 | 0.01004 | ||
0.09140 | 0.00012 | 0.00003 | 0.00001 | |||
MRE | 0.40469 | 0.04372 | 0.03901 | 0.03776 | ||
0.25131 | 0.00722 | 0.00365 | 0.00249 |
Model | ML Estimates (Standard Errors) | Model Selection Criteria | ||||
---|---|---|---|---|---|---|
AIC | BIC | AICC | HQIC | |||
ASPRD | = 1.661 (0.231) | 160.172 | 164.173 | 168.553 | 164.364 | 165.904 |
= 2.526 (0.135) | ||||||
WRD | = 2.572 (0.745) | 175.710 | 179.710 | 184.090 | 179.901 | 181.441 |
= 1.355 (0.123) | ||||||
TRD | = −0.958 (0.092) | 177.748 | 181.748 | 186.128 | 181.939 | 183.479 |
= 1.696 (0.082) | ||||||
ERD | = 2.348 (0.431) | 177.273 | 181.273 | 185.652 | 181.463 | 183.003 |
= 0.191 (0.024) | ||||||
RD | = 2.049 (0.126) | 196.416 | 198.416 | 200.606 | 198.479 | 199.282 |
PERD | = 1.868 (0.343) | 171.917 | 177.917 | 184.486 | 178.304 | 180.513 |
= 0.859 (0.270) | ||||||
= 0.013 (0.014) | ||||||
WD | = 3.441 (0.330) | 172.135 | 176.135 | 180.514 | 176.325 | 177.865 |
= 3.062 (0.114) | ||||||
ED | = 0.362 (0.044) | 265.989 | 267.989 | 270.179 | 268.052 | 268.854 |
PRD | = 1.720 (0.165) | 172.135 | 176.135 | 180.514 | 176.325 | 177.865 |
= 4.850 (1.036) | ||||||
SPRD | = 1.636 (0.159) | 171.682 | 175.682 | 180.061 | 175.873 | 177.412 |
= 5.851 (1.205) | ||||||
GD | = 7.488 (1.276) | 182.335 | 186.335 | 190.714 | 186.526 | 188.066 |
= 2.713 (0.478) |
Model | ML Estimates (Standard Errors) | Model Selection Criteria | ||||
---|---|---|---|---|---|---|
AIC | BIC | AICC | HQIC | |||
ASPRD | = 3.723 (0.609) | 22.943 | 26.943 | 31.229 | 27.143 | 28.629 |
= 0.970 (0.042) | ||||||
WRD | = 8.084 (1.740) | 41.687 | 45.686 | 49.973 | 45.886 | 47.372 |
= 0.485 (0.044) | ||||||
TRD | = −1.212 (0.381) | 67.313 | 71.313 | 75.599 | 71.513 | 72.999 |
= 0.901 (0.056) | ||||||
ERD | = 5.486 (1.184) | 47.857 | 51.857 | 56.143 | 52.057 | 53.543 |
= 0.974 (0.106) | ||||||
RD | = 1.289 (0.068) | 99.581 | 101.581 | 103.724 | 101.647 | 102.424 |
PERD | = 3.611 (0.716) | 29.352 | 35.352 | 41.781 | 35.759 | 37.881 |
= 0.679 (0.218) | ||||||
= 0.020 (0.021) | ||||||
WD | = 5.780 (0.576) | 30.413 | 34.413 | 38.699 | 34.613 | 36.099 |
= 1.628 (0.037) | ||||||
ED | = 0.663 (0.083) | 177.660 | 179.660 | 181.803 | 179.726 | 180.503 |
PRD | = 2.890 (0.288) | 30.413 | 34.413 | 38.699 | 34.613 | 36.099 |
= 2.892 (0.496) | ||||||
SPRD | = 2.764 (0.278) | 29.404 | 33.404 | 37.690 | 33.604 | 35.090 |
= 3.608 (0.596) | ||||||
GD | = 17.139 (3.077) | 47.902 | 51.902 | 56.189 | 52.103 | 53.589 |
= 11.574 (2.072) |
Model | ML Estimates (Standard Errors) | Model Selection Criteria | ||||
---|---|---|---|---|---|---|
AIC | BIC | AICC | HQIC | |||
ASPRD | = 0.307 (0.042) | 117.667 | 121.667 | 125.324 | 121.946 | 123.037 |
= 6.221 (1.114) | ||||||
WRD | = 0.002 (0.367) | 207.502 | 211.501 | 215.158 | 211.780 | 212.871 |
= 1.566 (0.184) | ||||||
TRD | = 0.539 (0.168) | 198.828 | 202.828 | 206.485 | 203.107 | 204.198 |
= 1.690 (0.149) | ||||||
ERD | = 0.295 (0.048) | 128.448 | 132.448 | 136.106 | 132.727 | 133.818 |
= 0.083 (0.024) | ||||||
RD | = 1.566 (0.115) | 207.422 | 209.422 | 211.250 | 209.512 | 210.107 |
PERD | = 0.398 (0.326) | 127.969 | 133.969 | 139.455 | 134.541 | 136.024 |
= 1.094 (1.505) | ||||||
= 0.834 (1.156) | ||||||
WD | = 1.385 (0.257) | 127.974 | 131.974 | 135.631 | 132.252 | 133.344 |
= 0.840 (0.099) | ||||||
ED | = 0.659 (0.097) | 130.352 | 132.352 | 134.181 | 132.443 | 133.037 |
PRD | = 0.420 (0.049) | 126.947 | 130.947 | 134.631 | 131.235 | 132.343 |
= 0.811 (0.068) | ||||||
SPRD | = 0.397 (0.047) | 128.368 | 132.368 | 136.026 | 132.648 | 133.739 |
= 1.069 (0.087) | ||||||
GD | = 0.771 (0.138) | 128.082 | 132.082 | 135.740 | 132.362 | 133.453 |
= 0.508 (0.125) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir, A.A.; Rasool, S.U.; Ahmad, S.P.; Bhat, A.A.; Jawa, T.M.; Sayed-Ahmed, N.; Tolba, A.H. A Robust Framework for Probability Distribution Generation: Analyzing Structural Properties and Applications in Engineering and Medicine. Axioms 2025, 14, 281. https://doi.org/10.3390/axioms14040281
Mir AA, Rasool SU, Ahmad SP, Bhat AA, Jawa TM, Sayed-Ahmed N, Tolba AH. A Robust Framework for Probability Distribution Generation: Analyzing Structural Properties and Applications in Engineering and Medicine. Axioms. 2025; 14(4):281. https://doi.org/10.3390/axioms14040281
Chicago/Turabian StyleMir, Aadil Ahmad, Shamshad Ur Rasool, S. P. Ahmad, A. A. Bhat, Taghreed M. Jawa, Neveen Sayed-Ahmed, and Ahlam H. Tolba. 2025. "A Robust Framework for Probability Distribution Generation: Analyzing Structural Properties and Applications in Engineering and Medicine" Axioms 14, no. 4: 281. https://doi.org/10.3390/axioms14040281
APA StyleMir, A. A., Rasool, S. U., Ahmad, S. P., Bhat, A. A., Jawa, T. M., Sayed-Ahmed, N., & Tolba, A. H. (2025). A Robust Framework for Probability Distribution Generation: Analyzing Structural Properties and Applications in Engineering and Medicine. Axioms, 14(4), 281. https://doi.org/10.3390/axioms14040281