2-Complex Symmetric Weighted Composition Operators on the Weighted Bergman Space of the Unit Ball
Abstract
:1. Introduction
2. Preliminaries
3. Complex Symmetric and 2-Complex Symmetric Weighted Composition Operators
- (a)
- is 2-complex symmetric on with the conjugation ;
- (b)
- is complex symmetric on with the conjugation ;
- (c)
- .
- (a)
- is 2-complex symmetric on with the conjugation ;
- (b)
- is complex symmetric on with the conjugation ;
- (c)
- .
4. Complex Symmetric Difference of Weighted Composition Operators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia, S.; Putinar, M. Complex symmetric operators and applications. Trans. Am. Math. Soc. 2006, 358, 1285–1315. [Google Scholar] [CrossRef]
- Garcia, S.R.; Wogen, W.R. Complex symmetric partial isometries. J. Funct. Anal. 2009, 257, 1251–1260. [Google Scholar]
- Garcia, S.; Putinar, M. Complex symmetric operators and applications II. Trans. Amer. Math. Soc. 2007, 359, 3913–3931. [Google Scholar]
- Garcia, S.; Wogen, W. Some new classes of complex symmetric operators. Trans. Am. Math. Soc. 2010, 362, 6065–6077. [Google Scholar]
- Gao, Y.X.; Zhou, Z.H. Complex symmetric composition operators induced by linear fractional maps. Indiana Univ. Math. J. 2020, 6, 367–384. [Google Scholar] [CrossRef]
- Han, K. Complex symmetric composition operators on the Newton space. J. Math. Anal. Appl. 2020, 488, 124091. [Google Scholar]
- Yao, X. Complex symmetric composition operators on a Hilbert space of Dirichlet series. J. Math. Anal. Appl. 2017, 452, 1413–1419. [Google Scholar]
- Li, A.; Liu, Y.; Chen, Y. Complex symmetric Toeplitz operators on the Dirichlet space. J. Math. Anal. Appl. 2020, 487, 123998. [Google Scholar]
- Li, R.; Yang, Y.; Lu, Y. A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces. J. Math. Anal. Appl. 2020, 489, 124173. [Google Scholar]
- Kang, D.O.; Ko, E.; Eun, L.J. Remarks on complex symmetric Toeplitz operators. Linear Multilinear Algebra 2022, 70, 3466–3476. [Google Scholar]
- Narayan, S.; Sievewright, D.; Tjani, M. Complex symmetric composition operators on weighted Hardy spaces. Proc. Amer. Math. Soc. 2020, 148, 2117–2127. [Google Scholar]
- Hu, X.; Shi, Y.; Wei, C. Complex symmetry of Toeplitz operators and composition operators. Bull. Korean Math. Soc. 2024, 61, 1509–1527. [Google Scholar]
- Dong, X.; Gao, Y.; Hu, Q. Complex symmetric Toeplitz operators on the unit polydisk. Int. J. Math. 2023, 34, 2250096. [Google Scholar]
- Helton, J.W. Operators with a representation as multiplication by x on a Sobolev space. Colloquia Math. Soc. Janos Bolyai 1970, 5, 279–287. [Google Scholar]
- Chō, M.; Ko, E.; Lee, J. On m-complex symmetric operators. Mediterr. J. Math 2016, 13, 2025–2038. [Google Scholar] [CrossRef]
- Bourdon, P.S.; Noor, S.W. Complex symmetry of invertible composition operators. J. Math. Anal. Appl. 2015, 429, 105. [Google Scholar] [CrossRef]
- Carswell, B.J.; MacCluer, B.D.; Schuster, A. Composition operators on the Fock space. Acta Sci. Math. 2023, 69, 871–887. [Google Scholar]
- Fatehi, M. Weighted composition operators on the Fock space. Oper Matrices 2019, 13, 461–469. [Google Scholar] [CrossRef]
- Le, T. Normal and isometric weighted composition operators on the Fock space. Bull. Lond. Math. Soc. 2014, 46, 847–856. [Google Scholar]
- Ueki, S.I. Weighted composition operator on the Fock space. Proc. Am. Math. Soc. 2007, 135, 1405–1410. [Google Scholar]
- Zhao, L. Unitary weighted composition operators on the Fock space of Cn. Complex Anal. Oper. Theory 2014, 8, 581–590. [Google Scholar]
- Wolf, E. Weighted composition operators between weighted Bergman spaces. Racsam 2009, 103, 11–15. [Google Scholar]
- Du, J.T.; Zhu, X.L. Essential norm of weighted composition operators between Bloch-type spaces in the open unit ball. Math. Inequal. Appl. 2019, 22, 45–58. [Google Scholar]
- Hu, Q.; Li, S.; Zhang, Y. Essential norm of weighted composition operators from analytic Besov spaces into Zygmund type spaces. J. Contemp. Math. Anal. 2019, 54, 129–142. [Google Scholar]
- Abbasi, E.; Vaezi, H.; Li, S.X. Essential norm of weighted composition operators from H∞ to nth weighted type spaces. Mediterr. J. Math. 2019, 16, 1–14. [Google Scholar] [CrossRef]
- Contreras, M.D.; Hernández-Díaz, A.G. Weighted composition operators between different Hardy spaces. Integral Equations Oper. Theory 2003, 46, 165–188. [Google Scholar]
- Cowen, C.C.; Gunatillake, G.; Ko, E. Hermitian weighted composition operators and Bergman extremal functions. Complex Anal. Oper. Theory 2013, 7, 69–99. [Google Scholar]
- Hu, L.; Li, S.; Yang, R. 2-complex symmetric composition operators on H2. Axioms 2022, 11, 358. [Google Scholar] [CrossRef]
- Xue, Y.F.; Jiang, Z.J.; Huang, C.S. 2-complex symmetric weighted composition operators on the weighted Bergman spaces of the half-plane. Complex Anal. Oper. Theory 2023, 17, 119. [Google Scholar]
- Potapov, V.P. Linear fractional transformations of matrices. Am. Math. Soc. Transl. 1980, 138, 21–36. [Google Scholar]
- Schwarz, B.; Zaks, A. Non-Euclidean motions in projective matrix spaces. Linear Algebra Appl. 1990, 137/138, 351–361. [Google Scholar] [CrossRef]
- Shmul’yan, Y.L. General linear-fraction maps of operator balls. Sib. Math. J. 1978, 19, 293–298. [Google Scholar] [CrossRef]
- Hassanlou, M.; Vaezi, H. Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces. Casp. J. Math. Sci. 2020, 9, 24–38. [Google Scholar]
- Jiang, C.; Dong, X.; Zhou, Z. Complex symmetric Toeplitz operators on the unit polydisk and the unit ball. Acta Math. 2020, 40, 35–44. [Google Scholar] [CrossRef]
- Zhu, K.H. Operator Theory in Function Spaces; Marecl Dekker: New York, NY, USA, 1990. [Google Scholar]
- Zhu, K.H. Spaces of Holomorphic Functions in the Unit Ball; Springer: New York, NY, USA, 2005. [Google Scholar]
- Ko, E.; Lee, J.E.; Lee, J. Complex symmetric Toeplitz operators on the weighted Bergman space. Complex Var. Elliptic. 2021, 67, 1393–1408. [Google Scholar] [CrossRef]
- Holden, H.; Karlsen, K.H.; Lie, K.A.; Risebro, N.H. Splitting methods for partial differential equations with rough solutions. J. Eur. Math. Soc. 2010, 7, 12. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Datt, G.; Bajaj, D.S.; Fiorenza, A. Weighted composition operators on variable exponent Lebesgue spaces. Adv. Oper. Theory 2024, 9, 68. [Google Scholar] [CrossRef]
- Hu, F.; Huang, C.; Jiang, Z. Weighted composition operators on α-Bloch-Orlicz spaces over the unit polydisc. AIMS Math. 2025, 10, 3672–3690. [Google Scholar] [CrossRef]
- Abbar, A.; Coine, C.; Petitjean, C. A pre-adjoint approach on weighted composition operators between spaces of Lipschitz functions. Results Math. 2024, 79, 85. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, M. Closed range and preserving frames of weighted composition operator on quaternionic Fock space. Results Math. 2024, 79, 127. [Google Scholar]
- Sharma, A.K.; Iqbal, J.; Farooq, S.; Mursaleen, M. Weighted composition operators on spaces generated by fractional Cauchy kernels of the unit ball. J. Anal. 2024, 32, 1507–1517. [Google Scholar]
- Choe, B.R.; Choi, K.; Koo, H.; Yang, J. Difference of weighted composition operators. J. Funct. Anal. 2020, 278, 108401. [Google Scholar] [CrossRef]
- Choe, B.R.; Choi, K.; Koo, H.; Yang, J. Difference of weighted composition operators II. Integral Equ. Oper. Theory 2020, 93, 1–19. [Google Scholar]
- Liu, B.; Rättyä, J. Compact differences of weighted composition operators. Collect. Math. 2022, 73, 89–105. [Google Scholar]
- Yang, Z. The difference of weighted composition operators on Fock spaces. Monatsh. Math. 2024, 205, 667–680. [Google Scholar]
- Lo, C.; Loh, A.W. Differences of composition operators on weighted Bergman spaces. Ric. Mat. 2023, 72, 815–833. [Google Scholar]
- Chen, J. Differences of weighted composition operators on Bergman spaces induced by doubling weights. Bull. Korean Math. Soc. 2023, 60, 1201–1219. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.-L.; Jiang, Z.-J. 2-Complex Symmetric Weighted Composition Operators on the Weighted Bergman Space of the Unit Ball. Axioms 2025, 14, 278. https://doi.org/10.3390/axioms14040278
Jin H-L, Jiang Z-J. 2-Complex Symmetric Weighted Composition Operators on the Weighted Bergman Space of the Unit Ball. Axioms. 2025; 14(4):278. https://doi.org/10.3390/axioms14040278
Chicago/Turabian StyleJin, Hui-Ling, and Zhi-Jie Jiang. 2025. "2-Complex Symmetric Weighted Composition Operators on the Weighted Bergman Space of the Unit Ball" Axioms 14, no. 4: 278. https://doi.org/10.3390/axioms14040278
APA StyleJin, H.-L., & Jiang, Z.-J. (2025). 2-Complex Symmetric Weighted Composition Operators on the Weighted Bergman Space of the Unit Ball. Axioms, 14(4), 278. https://doi.org/10.3390/axioms14040278