An Asymptotic Behavior Property of High-Order Nonlinear Dynamic Equations on Time Scales
Abstract
:1. Introduction
2. Some Basic Definitions of Time-Scale Calculus
3. Some Lemmas and Main Results
- (i)
- (ii)
4. Some Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001; ISBN 978-1-4612-6659-4. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Advanced Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003; ISBN 978-1-4612-6502-3. [Google Scholar] [CrossRef]
- Bohner, M.; Georgiev, S.G. Multivariable Dynamic Calculus on Time Scales; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-47619-3. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Djebali, S.; Moussaoui, T.; Mustafa, O.G. On the asymptotic integration of nonlinear differential equations. J. Comput. Appl. Math. 2007, 202, 352–376. [Google Scholar]
- Bohner, M.; Lutz, D.A. Asymptotic expansions and analytic dynamic equations. ZAMM Z. Angew. Math. Mech. 2006, 86, 37–45. [Google Scholar] [CrossRef]
- Bohner, M.; Stević, S. Asymptotic behavior of second-order dynamic equations. Appl. Math. Comput. 2007, 188, 1503–1512. [Google Scholar] [CrossRef]
- Karpuz, B. Asymptotic behaviour of bounded solutions of a class of higher-order neutral dynamic equations. Appl. Math. Comput. 2009, 215, 2174–2183. [Google Scholar]
- Karpuz, B. Sufficient conditions for the oscillation and asymptotic behaviour of higher-order dynamic equations of neutral type. Appl. Math. Comput. 2013, 221, 453–462. [Google Scholar]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Asymptotic behavior of solutions od forced third-order dynamic equations. Analysis 2019, 39, 1–6. [Google Scholar] [CrossRef]
- Akin-Bohner, E.; Bohner, M.; Akin, F. Pachpatte inequalities on time scales. JIPAM J. Inequal. Pure Appl. Math. 2005, 6, 1–23. [Google Scholar]
- Anderson, D.R. Dynamic double integral inequalities in two independent variables on time scales. J. Math. Inequal. 2008, 2, 163–184. [Google Scholar]
- Ferreira, R.A.C.; Torres, D.F.M. Generalizations of Gronwall-Bihari inequalities on time scales. J. Differ. Equ. Appl. 2009, 15, 529–539. [Google Scholar]
- Li, W.N. Some delay integral inequalities on time scales. Comput. Math. Appl. 2010, 59, 1929–1936. [Google Scholar]
- Feng, Q.H.; Meng, F.W.; Zhang, B. Gronwall-Bellman type nonlinear delay integral inequalities on time scales. J. Math. Anal. Appl. 2011, 382, 772–784. [Google Scholar]
- Ma, Q.H.; Pečarić, J. The bounds on the solutions of certain two-dimensional delay dynamic systems on time scales. Comput. Math. Appl. 2011, 61, 2158–2163. [Google Scholar] [CrossRef]
- Ma, Q.H.; Wang, J.W.; Ke, X.H.; Pečarić, J. On the boundedness of a class of nonlinear dynamic equations of second order. Appl. Math. Lett. 2013, 26, 1099–1105. [Google Scholar]
- Agarwal, R.P.; Bohner, M. Basic calculus on time scales and some of its applications. Results Math. 1999, 35, 3–22. [Google Scholar]
- Máté, A.; Nevai, P. Sublinear perturbations of the differential equation and of the analgous difference equation. J. Differ. Equ. 1984, 53, 234–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Ma, Q. An Asymptotic Behavior Property of High-Order Nonlinear Dynamic Equations on Time Scales. Axioms 2025, 14, 270. https://doi.org/10.3390/axioms14040270
Yuan Y, Ma Q. An Asymptotic Behavior Property of High-Order Nonlinear Dynamic Equations on Time Scales. Axioms. 2025; 14(4):270. https://doi.org/10.3390/axioms14040270
Chicago/Turabian StyleYuan, Yuan, and Qinghua Ma. 2025. "An Asymptotic Behavior Property of High-Order Nonlinear Dynamic Equations on Time Scales" Axioms 14, no. 4: 270. https://doi.org/10.3390/axioms14040270
APA StyleYuan, Y., & Ma, Q. (2025). An Asymptotic Behavior Property of High-Order Nonlinear Dynamic Equations on Time Scales. Axioms, 14(4), 270. https://doi.org/10.3390/axioms14040270