Examples of Compact Simply Connected Holomorphic Symplectic Manifolds Which Are Not Formal
Abstract
:1. Introduction
2. Preliminary
2.1. On Compact Kähler Holomorphic Symplectic Manifolds
2.2. Compact Holomorphic Symplectic Surfaces
2.3. Compact Parallelizable Manifolds
3. General Construction from Parallelizible Manifolds
4. Several Massey Products
4.1. Our Main Result
4.2. Some Calculations
4.3. Massey Quadruple Products
4.4. Relative Massey Product
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández, M.; Gray, A. Compact Symplectic Solvmanifolds not Admitting Complex Structures. Geometae Dedicata 1990, 34, 295–299. [Google Scholar]
- Thurston, W.P. Some simple examples of symplectic manifolds. Proc. Amer. Math. Soc. 1976, 55, 467–468. [Google Scholar] [CrossRef]
- McDuff, D. Examples of simply-connected symplectic non-Kählerian manifolds. J. Differ. Geom. 1984, 20, 267–277. [Google Scholar] [CrossRef]
- Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D. Dennis: Real homotopy theory of Kähler manifolds. Invent. Math. 1975, 29, 245–274. [Google Scholar] [CrossRef]
- Sullivan, D. Genetics of homotopy theory and the Adams conjecture. Ann. Math. 1974, 100, 1C79. [Google Scholar] [CrossRef]
- Sullivan, D. Differential forms and the topology of manifolds. In Manifolds-Tokyo 1973; Proceedings of the International Conference on Manifolds and Related Topics in Topology, Tokyo, 1973; University Tokyo Press: Tokyo, Japan, 1975; pp. 37–49. [Google Scholar]
- Sullivan, D. Cartan-de Rham homotopy theory. In Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974); Astrisque, No. 32–33; Société Mathématique de France: Paris, France, 1976; pp. 227–254. [Google Scholar]
- Weil, A. Introduction á l’étude des Variétés Kählériennes; Hermann: Paris, France, 1958. [Google Scholar]
- Tralle, A.; Oprea, J. Symplectic manifolds with no Kähler structure. In Lecture Notes in Mathematics 1661; Springer: New York, NY, USA, 1997. [Google Scholar]
- Guan, Z. Examples of Compact Holomorphic Symplectic Manifolds Which Are Not Kählerian III. Intern. J. Math. 1995, 6, 709–718. [Google Scholar] [CrossRef]
- Guan, D. Examples of Compact Holomorphic Symplectic Manifolds Which Are Not Kählerian II. Invent. Math. 1995, 121, 135–145. [Google Scholar] [CrossRef]
- Bogomolov, F. On Guan’s Examples of Simply Connected Non-Kähler Compact Complex Manifolds. Amer. J. Math. 1996, 118, 1037–1046. [Google Scholar] [CrossRef]
- Gompf, R.E. A new construction of symplectic manifolds. Ann. Math. 1995, 142, 527–595. [Google Scholar] [CrossRef]
- Fernandez, M.; Muñoz, V. An 8-dimensional Nonformal, Simply Connected, Symplectic Manifold. Ann. Math. 2008, 167, 1045–1054. [Google Scholar] [CrossRef]
- Babenko, I.K.; Taimanov, I.A. On non-formal simply connected symplectic manifolds. Siberian Math. J. 2000, 41, 204–217. [Google Scholar] [CrossRef]
- Cavalcanti, G.; Fernandez, M.; Muñoz, V. Symplectic Resolutions, Lefschetz Property and Formality. Adv. Math. 2008, 218, 576–599. [Google Scholar] [CrossRef]
- Kobayashi, S. Differential Geometry of Complex Vector Bundles; Iwanami Shoten; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Siu, Y. Every K-3 Surface is Kähler. Inv. Math. 1983, 73, 139–150. [Google Scholar] [CrossRef]
- Todorov, A. Applications of Kähler-Einstein–Calabi-Yau metric to moduli of K-3 Surfaces. Inv. Math. 1980, 61, 251–265. [Google Scholar] [CrossRef]
- Todorov, A. Every Holomorphic Symplectic Manifold Admits a Kähler Metric; Institute of Mathematics: Sofia, Bulgaria, 1991. [Google Scholar]
- Beauville, A. Variétés kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 1983, 18, 755–782. [Google Scholar] [CrossRef]
- Bogomolov, F. On the decomposition of Kähler manifolds with trivial canonical class. Math. USSR-Sb. 1974, 22, 580–583. [Google Scholar] [CrossRef]
- Fujiki, A. On the de Rham Cohomology Group of a Compact Kähler Symplectic Manifold. Adv. Stud. Pure Math. 1987, 10, 105–165. [Google Scholar]
- Barth, W.; Peters, C.; de Ven, A.V. Compact Complex Surfaces; Ergebnisse de Mathematik und ihrer Grenzgebiette, 3 Folge·Band 4; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Fogarty, J. Algebraic families on an algebraic surface. Amer. J. Math. 1968, 90, 511–521. [Google Scholar] [CrossRef]
- Fogarty, J. Algebraic Families on an algebraic surface II: The Picard scheme of the punctual Hilbert scheme. Amer. J. Math. 1973, 95, 660–687. [Google Scholar] [CrossRef]
- Iarrobino, A. Punctual Hilbert Schemes. Bull. Amer. Math. Soc. 1972, 78, 819–823. [Google Scholar] [CrossRef]
- Varouchas, J. Stabilité de la classe des variétés kähleriennes par certains morphismes propres. Inv. Math. 1984, 77, 117–127. [Google Scholar] [CrossRef]
- Nomizu, K. On the Cohomology of Homogeneous Spaces of Nilpotent Lie Groups. Ann. Math. 1954, 59, 531–538. [Google Scholar] [CrossRef]
- Console, S.; Fino, A. Dolbeault Cohomology of compact Nilmanifolds. Transform. Groups 2001, 6, 111–124. [Google Scholar] [CrossRef]
- Guan, D. Examples of Compact Holomorphic Symplectic Manifolds which admit no Kähler structure. In Geometry and Analysis on Complex Manifolds—Festschift for Professor S. Kobayashi’s 60-th Birthday; World Publishing Co.: New York, NY, USA, 1994; pp. 63–74. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, D. Examples of Compact Simply Connected Holomorphic Symplectic Manifolds Which Are Not Formal. Axioms 2025, 14, 226. https://doi.org/10.3390/axioms14030226
Guan D. Examples of Compact Simply Connected Holomorphic Symplectic Manifolds Which Are Not Formal. Axioms. 2025; 14(3):226. https://doi.org/10.3390/axioms14030226
Chicago/Turabian StyleGuan, Daniel. 2025. "Examples of Compact Simply Connected Holomorphic Symplectic Manifolds Which Are Not Formal" Axioms 14, no. 3: 226. https://doi.org/10.3390/axioms14030226
APA StyleGuan, D. (2025). Examples of Compact Simply Connected Holomorphic Symplectic Manifolds Which Are Not Formal. Axioms, 14(3), 226. https://doi.org/10.3390/axioms14030226