On a Sum of Two Akash Distributions: Inference and Applications
Abstract
:1. Introduction
Some Properties of This Pdf Are
- (a)
- The cdf of Y is
- (b)
- For the r-th moment of Y is
- (c)
- The moment generating function () is given by
2. The AKS Distribution
2.1. Density Function
2.2. Properties
2.3. Reliability Analysis
- 1.
- 2.
2.4. Order Statistics
2.5. Moments
3. Inference
- , then the discriminant of is . Since its leading coefficient is , it follows that for all x. Therefore, since p is decreasing for all x, and given that and , the result follows.
- , the polynomial has two positive real roots, which areUsing the second derivative criterion, we find that at , p reaches a local minimum value, and at , p reaches a local maximum value. Moreover, since and , the result follows.
- , the only critical point of p is . Since the leading coefficient of is negative, p is decreasing for all x. Moreover, is an inflection point of p, and since , the result follows.
3.1. Method of Moments
3.2. Maximum Likelihood Estimation
3.3. Simulation Study
Algorithm 1 for simulating from the Z∼ can proceed as follows: |
|
4. Applications
4.1. Application 1
4.2. Application 2
5. Conclusions
- The AKS distribution has a simple representation.
- The cumulative distribution and risk functions are explicit and represented by known functions.
- The moments and ML estimators coincide and have closed-form solutions.
- The ML estimator performs very well, even when the samples are small.
- The AIC, BIC, and HQIC model selection criteria indicate that in both applications, the AKS distribution provides a better fit to the data compared to the AK and L models. Additionally, the Anderson–Darling, Cramér–von Mises, Shapiro–Wilk, and Kolmogorov–Smirnov tests confirm that the quantile residuals follow a standard normal distribution.
- A future study could, for example, explore the sum of two AK distributions with different parameters, thereby obtaining a two-parameter distribution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindley, D.V. Fiducial distributions and Bayes’ theorem. J. R. Stat. Soc. Ser. B 1958, 20, 102–107. [Google Scholar] [CrossRef]
- Hussain, E. The Non-Linear Functions of Order Statistics and Their Properties in Selected Probability Models. Ph.D Thesis, Department of Statistics, University of Karachi, Karachi, Pakistan, 2006. [Google Scholar]
- Ghitany, M.E.; Atieh, B.; Nadarajah, S. Lindley distribution and its applications. Math. Comput. Simul. 2008, 78, 493–506. [Google Scholar] [CrossRef]
- Zakerzadeh, H.; Dolati, A. Generalized Lindley distribution. J. Math. Ext. 2009, 3, 13–25. [Google Scholar]
- Gómez-Déniz, E.; Calderin-Ojeda, E. The discrete Lindley distribution: Properties and application. J. Stat. Comput. Simul. 2011, 81, 1405–1416. [Google Scholar] [CrossRef]
- Krishna, H.; Kumar, K. Reliability estimation in Lindley distribution with progressively type II right censored sample. Math. Comput. Simulat. 2011, 82, 281–294. [Google Scholar] [CrossRef]
- Bakouch, H.S.; Al-Zaharani, B.; Al-Shomrani, A.; Marchi, V.; Louzada, F. An extended Lindley distribution. J. Korean Stat. Soc. 2012, 41, 75–85. [Google Scholar] [CrossRef]
- Shanker, R.; Sharma, S.; Shanker, R. A two-parameter Lindley distribution for modeling waiting and survival times data. Appl. Math. 2013, 4, 363–368. [Google Scholar] [CrossRef]
- Ghitany, M.; Al-Mutairi, D.; Balakrishnan, N.; Al-Enezi, I. Power Lindley distribution and associated inference. Comput. Stat. Data Anal. 2013, 64, 20–33. [Google Scholar] [CrossRef]
- Al-Mutairi, D.K.; Ghitany, M.E.; Kundu, D. Inferences on stress-strength reliability from Lindley distributions. Commun. Stat.-Theory Methods 2013, 42, 1443–1463. [Google Scholar] [CrossRef]
- Oluyede, B.O.; Yang, T. A new class of generalized Lindley distribution with applications. J. Stat. Comput. Simul. 2014, 85, 2072–2100. [Google Scholar] [CrossRef]
- Shanker, R.; Hagos, F.; Sujatha, S. On modeling of Lifetimes data using exponential and Lindley distributions. Biom. Biostat. Int. J. 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Abouammoh, A.M.; Alshangiti, A.M.; Ragab, I.E. A new generalized Lindley distribution. J. Stat. Comput. Simul. 2015, 85, 3662–3678. [Google Scholar] [CrossRef]
- Shanker, R. Akash Distribution and Its Applications. Int. J. Probab. Stat. 2015, 4, 65–75. [Google Scholar]
- Shanker, R.; Shukla, K.K. On Two-Parameter Akash Distribution. Biom. Biostat. Int. J. 2017, 6, 00178. [Google Scholar] [CrossRef]
- Shanker, R.; Shukla, K.K. Power Akash Distribution and Its Application. J. Appl. Quant. Methods 2017, 12, 1–10. [Google Scholar]
- Gómez, Y.M.; Firinguetti-Limone, L.; Gallardo, D.I.; Gómez, H.W. An Extension of the Akash Distribution: Properties, Inference and Application. Mathematics 2014, 12, 31. [Google Scholar] [CrossRef]
- Yaghoubi, A. Sum of Independent Random Variable for Shanker, Akash, Ishita, Pranav, Rani and Ram Awadh Distributions. arXiv 2022, arXiv:2208.08006. [Google Scholar]
- Glaser, R.E. Bathtub and Related Failure Rate Characterizations. J. Am. Stat. Assoc. 1980, 75, 667–672. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 8 June 2024).
- Fuller, E.R., Jr.; Frieman, S.; Quinn, J.; Quinn, G.; Carter, W. Fracture mechanics approach to the design of glass aircraft windows: A case study, SPIE Procceding. In Window and Dome Technologies and Materials IV; SPIE: Bellingham, WA, USA, 1994; Volume 2286, pp. 419–430. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Hannan, E.J.; Quinn, B.G. The Determination of the order of an autoregression. J. R. Stat. Soc. Series B 1979, 41, 190–195. [Google Scholar] [CrossRef]
- Dunn, P.K.; Smyth, G.K. Randomized Quantile Residuals. J. Comput. Graph. Stat. 1996, 5, 236–244. [Google Scholar] [CrossRef]
n | B | SE | RMSE | CP | |
---|---|---|---|---|---|
0.2 | 20 | 0.001 | 0.018 | 0.018 | 0.942 |
50 | 0.001 | 0.012 | 0.012 | 0.949 | |
100 | 0.0002 | 0.008 | 0.008 | 0.955 | |
0.5 | 20 | 0.002 | 0.046 | 0.046 | 0.952 |
50 | 0.001 | 0.029 | 0.029 | 0.952 | |
100 | 0.001 | 0.019 | 0.019 | 0.946 | |
0.8 | 20 | 0.004 | 0.073 | 0.073 | 0.945 |
50 | 0.002 | 0.045 | 0.045 | 0.957 | |
100 | 0.002 | 0.031 | 0.031 | 0.953 | |
1 | 20 | 0.007 | 0.091 | 0.091 | 0.955 |
50 | −0.001 | 0.056 | 0.056 | 0.954 | |
100 | 0.004 | 0.040 | 0.040 | 0.941 | |
2 | 20 | 0.013 | 0.204 | 0.204 | 0.954 |
50 | 0.007 | 0.126 | 0.126 | 0.943 | |
100 | 0.008 | 0.088 | 0.088 | 0.948 | |
3 | 20 | 0.051 | 0.366 | 0.369 | 0.943 |
50 | 0.021 | 0.223 | 0.224 | 0.952 | |
100 | 0.009 | 0.155 | 0.155 | 0.950 | |
4 | 20 | 0.067 | 0.537 | 0.540 | 0.946 |
50 | 0.025 | 0.323 | 0.324 | 0.953 | |
100 | 0.028 | 0.238 | 0.240 | 0.949 | |
5 | 20 | 0.052 | 0.688 | 0.690 | 0.955 |
50 | 0.049 | 0.441 | 0.444 | 0.954 | |
100 | 0.016 | 0.309 | 0.309 | 0.948 |
18.83 | 20.80 | 21.657 | 23.03 | 23.23 | 24.05 | 24.321 | 25.50 | 25.52 | 25.80 |
26.69 | 26.77 | 26.78 | 27.05 | 27.67 | 29.90 | 31.11 | 33.20 | 33.73 | 33.76 |
33.89 | 34.76 | 35.75 | 35.91 | 36.98 | 37.08 | 37.09 | 39.58 | 44.045 | 45.29 |
45.381 |
n | Median | Mean | Variance | CS | CK |
---|---|---|---|---|---|
31 | 29.90 | 30.81 | 52.61 | 0.405 | 2.287 |
Model | ML Estimate | AIC | BIC | HQIC |
---|---|---|---|---|
AKS() | = 0.192(0.014) | 225.868 | 227.302 | 226.336 |
AK() | = 0.097(0.010) | 242.682 | 244.116 | 243.149 |
L() | = 0.063(0.008) | 255.988 | 257.422 | 256.456 |
27 | 20 | 17 | 12 | 33 | 19 | 27 | 27 | 25 | 26 |
17 | 13 | 15 | 22 | 24 | 20 | 9 | 20 | 13 | 26 |
8 | 27 | 29 | 7 | 33 | 28 | 15 | 36 | 31 | 24 |
22 | 12 | 26 | 35 | 15 | 45 | 10 | 27 | 24 | 42 |
27 | 23 | 16 | 18 | 28 | 17 | 30 | 18 | 19 | 10 |
30 | 30 | 12 | 20 | 17 | 26 | 23 | 35 | 33 | 18 |
12 | 22 | 30 | 15 | 19 | 32 | 19 | 19 | 50 | 24 |
17 | 34 | 29 | 34 | 32 | 12 | 44 | 39 | 34 | 16 |
31 | 22 | 20 | 17 | 18 | 25 |
n | Median | Mean | Variance | CS | CK |
---|---|---|---|---|---|
86 | 23.00 | 23.53 | 79.264 | 0.489 | 3.033 |
Model | ML Estimate | AIC | BIC | HQIC |
---|---|---|---|---|
AKS() | 617.956 | 620.411 | 618.944 | |
AK() | 640.645 | 643.100 | 641.633 | |
L() | 669.327 | 671.781 | 670.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firinguetti-Limone, L.; Olmos, N.M.; Venegas, O.; Gómez, H.W. On a Sum of Two Akash Distributions: Inference and Applications. Axioms 2025, 14, 158. https://doi.org/10.3390/axioms14030158
Firinguetti-Limone L, Olmos NM, Venegas O, Gómez HW. On a Sum of Two Akash Distributions: Inference and Applications. Axioms. 2025; 14(3):158. https://doi.org/10.3390/axioms14030158
Chicago/Turabian StyleFiringuetti-Limone, Luis, Neveka M. Olmos, Osvaldo Venegas, and Héctor W. Gómez. 2025. "On a Sum of Two Akash Distributions: Inference and Applications" Axioms 14, no. 3: 158. https://doi.org/10.3390/axioms14030158
APA StyleFiringuetti-Limone, L., Olmos, N. M., Venegas, O., & Gómez, H. W. (2025). On a Sum of Two Akash Distributions: Inference and Applications. Axioms, 14(3), 158. https://doi.org/10.3390/axioms14030158