Research on Group Scheduling with General Logarithmic Deterioration Subject to Maximal Completion Time Cost
Abstract
:1. Introduction
2. Problem Formulation
3. Basic Result
Algorithm 1 . |
Step 1. For , jobs are arranged in non-increasing order of (Lemma 4). Step 2. All groups are arranged in non-increasing order of (Lemma 5). Step 3. Calculate the value by (4). |
- ,,,.
- .
4. Extension
Algorithm 2 . |
Step 1. If and , for , the jobs are arranged in non-increasing order of (Lemma 8). If and , for , jobs are arranged in a non-decreasing order of (Lemma 10). Step 2. If and , groups are arranged in a non-increasing order of (Lemma 9). If and , groups are arranged in a non-decreasing order of (Lemma 11). Step 3. Calculate . |
- ,
- ,
- .
- .
5. Numerical Study
- (1)
- Jobs: ;
- (2)
- Groups: ;
- (3)
- (such that and , );
- (4)
- , ();
- (5)
- , , ;
- (6)
- ().
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuo, W.-H.; Yang, D.-L. Single-machine group scheduling with a time-dependent learning effect. Comput. Oper. Res. 2006, 33, 2099–2112. [Google Scholar] [CrossRef]
- Lee, W.-C.; Wu, C.-C. A note on single-machine group scheduling problems with position-based learning effect. Appl. Math. Model. 2009, 33, 2159–2163. [Google Scholar] [CrossRef]
- Kuo, W.-H. Single-machine group scheduling with time-dependent learning effect and position-based setup time learning effect. Ann. Oper. Res. 2012, 196, 349–359. [Google Scholar] [CrossRef]
- He, Y.; Sun, L. One-machine scheduling problems with deteriorating jobs and position-dependent learning effects under group technology considerations. Int. J. Syst. Sci. 2015, 46, 1319–1326. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, L.-J.; Zhang, W.-Y. Single-machine group scheduling with new models of position-dependent processing times. Comput. Ind. Eng. 2018, 117, 1–5. [Google Scholar] [CrossRef]
- Liu, F.; Yang, J.; Lu, Y.-Y. Solution algorithms for single-machine group scheduling with ready times and deteriorating jobs. Eng. Optim. 2019, 51, 862–874. [Google Scholar] [CrossRef]
- Huang, X. Bicriterion scheduling with group technology and deterioration effect. J. Appl. Math. Comput. 2019, 60, 455–464. [Google Scholar] [CrossRef]
- Wang, D.-Y.; Ye, C.-M. Group scheduling with learning effect and random processing time. J. Math. 2021, 2021, 6685149. [Google Scholar] [CrossRef]
- Qian, J.; Zhan, Y. Single-machine group scheduling model with position-dependent and job-dependent DeJong’s learning effect. Mathematics 2022, 10, 2454. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X. Group technology scheduling with due-date assignment and controllable processing times. Processes 2023, 11, 1271. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, X.; Zhang, F.; Cheng, Y. On optimal due date assignment without restriction and resource allocation in group technology scheduling. J. Comb. Optim. 2023, 45, 64. [Google Scholar] [CrossRef]
- Li, M.-H.; Lv, D.-Y.; Lu, Y.-Y.; Wang, J.-B. Scheduling with group technology, resource allocation, and learning effect simultaneously. Mathematics 2024, 12, 1029. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W. Optimal different due-dates assignment scheduling with group technology and resource allocation. Mathematics 2024, 12, 436. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W. Single machine group scheduling jobs with resource allocations subject to unrestricted due date assignments. J. Appl. Math. Comput. 2024, 70, 6283–6308. [Google Scholar] [CrossRef]
- Yin, N.; Gao, M. Single-machine group scheduling with general linear deterioration and truncated learning effects. Comput. Appl. Math. 2024, 43, 386. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. Single-machine group technology scheduling with resource allocation and slack due window assignment including minmax criterion. J. Oper. Res. Soc. 2024. [Google Scholar] [CrossRef]
- Gawiejnowicz, S. Models and Algorithms of Time-Dependent Scheduling; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Strusevich, V.A.; Rustogi, K. Scheduling with Times-Changing Effects and Rate-Modifying Activities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Shabtay, D.; Mor, B. Exact algorithms and approximation schemes for proportionate flow shop scheduling with step-deteriorating processing times. J. Sched. 2024, 27, 239–256. [Google Scholar] [CrossRef]
- Sun, Z.-W.; Lv, D.-Y.; Wei, C.-M.; Wang, J.-B. Flow shop scheduling with shortening jobs for makespan minimization. Mathematics 2025, 13, 363. [Google Scholar] [CrossRef]
- Wang, J.-B.; Wang, Y.-C.; Wan, C.; Lv, D.-Y.; Zhang, L. Controllable processing time scheduling with total weighted completion time objective and deteriorating jobs. Asia-Pac. J. Oper. Res. 2024, 41, 2350026. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Geng, X.-N.; Xue, J.; Wang, J.-B. Single machine slack due window assignment and deteriorating jobs. J. Ind. Manag. Optim. 2024, 20, 1593–1614. [Google Scholar] [CrossRef]
- Lu, Y.-Y.; Zhang, S.; Tao, J.-Y. Earliness-tardiness scheduling with delivery times and deteriorating jobs. Asia-Pac. J. Oper. Res. 2024. [Google Scholar] [CrossRef]
- Qiu, X.-Y.; Wang, J.-B. Single-machine scheduling with mixed due-windows and deterioration effects. J. Appl. Math. Comput. 2024. [Google Scholar] [CrossRef]
- Koulamas, C.; Kyparisis, G.J. Single-machine and two-machine flowshop scheduling with general learning functions. Eur. J. Oper. Res. 2007, 178, 402–407. [Google Scholar] [CrossRef]
- Zhao, S. Scheduling jobs with general truncated learning effects including proportional setup times. Comput. Appl. Math. 2022, 41, 146. [Google Scholar] [CrossRef]
- Azzouz, A.; Ennigrou, M.; Said, L.B. Scheduling problems under learning effects: Classification and cartography. Int. J. Prod. Res. 2018, 56, 1642–1661. [Google Scholar] [CrossRef]
- Jiang, Z.-Y.; Chen, F.-F.; Zhang, X.-D. Single-machine scheduling with times-based and job-dependent learning effect. J. Oper. Res. Soc. 2017, 68, 809–815. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.-B. Single-machine scheduling with simultaneous learning effects and delivery times. Mathematics 2024, 12, 2522. [Google Scholar] [CrossRef]
- Gerstl, E.; Mosheiov, G. Minimizing the number of tardy jobs with generalized due-dates and position-dependent processing times. Optim. Lett. 2024. [Google Scholar] [CrossRef]
- Cohen, E.; Shapira, D. Minimising the makespan on parallel identical machines with log-linear position-dependent processing times. J. Oper. Res. Soc. 2024. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Yang, S.-H.; Lv, D.-Y.; Wang, J.-B. Research on convex resource allocation scheduling with exponential time-dependent learning effects. Comput. J. 2025, 68, 97–108. [Google Scholar] [CrossRef]
- Vitaly, K.R.; Strusevich, A. Simple matching vs linear assignment in scheduling models with positional effects: A critical review. Eur. J. Oper. Res. 2012, 222, 393–407. [Google Scholar]
- Montoya-Torres, J.R.; Moreno-Camacho, C.A.; Velez-Gallego, M.C. Variable neighbourhood search for job scheduling with position-dependent deteriorating processing times. J. Oper. Res. Soc. 2023, 74, 873–887. [Google Scholar] [CrossRef]
- Saavedra-Nieves, A.; Mosquera, M.A.; Fiestras-Janeiro, M.G. Sequencing situations with position-dependent effects under cooperation. Int. Trans. Oper. Res. 2025, 32, 1620–1640. [Google Scholar] [CrossRef]
- Hu, C.M.; Zheng, R.; Lu, S.J.; Liu, X.B. Parallel machine scheduling with position-dependent processing times and deteriorating maintenance activities. J. Glob. Optim. 2024. [Google Scholar] [CrossRef]
- Liu, P.; Tang, L.; Zhou, X. Two-agent group scheduling with deteriorating jobs on a single machine. Int. J. Adv. Manuf. Technol. 2010, 47, 657–664. [Google Scholar] [CrossRef]
- Sloan, T.W.; Shanthikumar, J.G. Combined production and maintenance scheduling for a multipleproduct, single-machine production system. Prod. Oper. Manag. 2000, 9, 379–399. [Google Scholar] [CrossRef]
- Gawiejnowicz, S.; Kurc, W.; Pankowska, L. Pareto and scalar bicriterion scheduling of deteriorating jobs. Comput. Oper. Res. 2006, 33, 746–767. [Google Scholar] [CrossRef]
- Bajestani, M.A.; Banjevic, D.; Beck, J.C. Integrated maintenance planning and production scheduling with Markovian deteriorating machine conditions. Int. J. Prod. Res. 2014, 52, 7377–7400. [Google Scholar] [CrossRef]
- Mosheiov, G. A note on scheduling deteriorating jobs. Math. Comput. Model. 2005, 41, 883–886. [Google Scholar] [CrossRef]
- Biskup, D. Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 1999, 115, 173–178. [Google Scholar] [CrossRef]
- Mosheiov, G. Scheduling problems with a learning effect. Eur. J. Oper. Res. 2001, 132, 687–693. [Google Scholar] [CrossRef]
- Biskup, D. A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res. 2008, 188, 315–329. [Google Scholar] [CrossRef]
- Gordon, V.S.; Potts, C.N.; Strusevich, V.A.; Whitehead, J.D. Single machine scheduling models with deterioration and learning: Handling precedence constraints via priority generation. J. Sched. 2008, 11, 357–370. [Google Scholar] [CrossRef]
- Wang, J.-B.; Wang, L.-Y.; Wang, D.; Wang, X.-Y. Single machine scheduling with a time-dependent deterioration. Int. J. Adv. Manuf. Technol. 2009, 43, 805–809. [Google Scholar] [CrossRef]
- Kuo, W.-H.; Yang, D.-L. Minimizing the total completion time in a single-machine scheduling problem with a time-dependent learning effect. Eur. J. Oper. Res. 2006, 174, 1184–1190. [Google Scholar] [CrossRef]
- Lee, W.-C.; Wu, C.-C.; Liu, H.-C. A note on single-machine makespan problem with general deteriorating function. Int. J. Adv. Manuf. Technol. 2009, 40, 1053–1056. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.-J. Machine scheduling problems with a position-dependent deterioration. Appl. Math. Model. 2015, 39, 2897–2908. [Google Scholar] [CrossRef]
- Yang, D.-L.; Cheng, T.C.E.; Kuo, W.-H. Scheduling with a general learning effect. Int. J. Adv. Manuf. Technol. 2013, 67, 217–229. [Google Scholar] [CrossRef]
- Cheng, T.C.E.; Lai, P.-J.; Wu, C.-C.; Lee, W.-C. Single-machine scheduling with sum-of-logarithm-processing-times-based learning considerations. Inf. Sci. 2009, 197, 3127–3135. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N.; Liu, F. Flow shop scheduling with general position weighted learning effects to minimise total weighted completion time. J. Oper. Res. Soc. 2021, 72, 2674–2689. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. Research on two-machine flow shop scheduling problem with release dates and truncated learning effects. Eng. Optim. 2024. [Google Scholar] [CrossRef]
- Geng, X.-N.; Sun, X.Y.; Wang, J.Y.; Pan, L. Scheduling on proportionate flow shop with job rejection and common due date assignment. Comput. Ind. Eng. 2023, 181, 109317. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N.; Wang, J.Y.; Liu, T. A bicriterion approach to due date assignment scheduling in single-machine with position-dependent weights. Asia-Pac. J. Oper. Res. 2023, 40, 2250018. [Google Scholar] [CrossRef]
- Wang, J.-B.; Lv, D.-Y.; Wan, C. Proportionate flow shop scheduling with job-dependent due windows and position-dependent weights. Asia-Pac. J. Oper. Res. 2024. [Google Scholar] [CrossRef]
- Qian, J.; Guo, Z.Y. Common due window assignment and single machine scheduling with delivery time, resource allocation, and job-dependent learning effect. J. Appl. Math. Comput. 2024, 70, 4441–4471. [Google Scholar] [CrossRef]
- Bai, B.; Wei, C.-M.; He, H.-Y.; Wang, J.-B. Study on single-machine common/slack due-window assignment scheduling with delivery times, variable processing times and outsourcing. Mathematics 2024, 12, 2833. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Liu, T.; Wang, J.Y.; Geng, X.-N. Single-machine scheduling simultaneous consideration of resource allocations and exponential time-dependent learning effects. J. Oper. Res. Soc. 2024. [Google Scholar] [CrossRef]
- Kim, E.S.; Oron, D. Minimizing total completion time on a single machine with step improving jobs. J. Oper. Res. Soc. 2015, 66, 1481–1490. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, E.S.; Lee, J.H. Scheduling of step-improving jobs with an identical improving rate. J. Oper. Res. Soc. 2022, 73, 1127–1136. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lin, W.-C.; Azzouz, A.; Xu, J.Y.; Chiu, Y.-L.; Tsai, Y.-W.; Shen, P.Y. A bicriterion single-machine scheduling problem with step-improving processing times. Comput. Ind. Eng. 2022, 171, 108469. [Google Scholar] [CrossRef]
- Cheng, T.C.E.; Kravchenko, S.A.; Lin, B.M.T. On scheduling of step-improving jobs to minimize the total weighted completion time. J. Oper. Res. Soc. 2024, 75, 720–730. [Google Scholar] [CrossRef]
Problem | Complexity | Paper |
---|---|---|
Mosheiov [41] | ||
Biskup [42] | ||
Biskup [42] | ||
Gordon et al. [45] | ||
Gordon et al. [45] | ||
Wang et al. [46] | ||
Wang et al. [46] | ||
Kuo and Yang [47] | ||
Kuo and Yang [47] | ||
Lee et al. [48] | ||
Koulamas and Kyparisis [25] | ||
Koulamas and Kyparisis [25] | ||
Huang and Wang [49] | ||
Huang and Wang [49] | ||
Yang et al. [50] | ||
Yang et al. [50] | ||
Cheng et al. [51] | ||
Cheng et al. [51] | ||
Kuo and Yang [1] | ||
Kuo and Yang [1] | ||
Lee and Wu [2] | ||
Kuo [3] | ||
this paper | ||
this paper | ||
this paper |
38 | 88 | 91 | 35 | 75 | 73 | 82 | |
72 | 92 | 29 | 67 | 27 | 59 | 88 | |
86 | 91 | 49 | 85 | 73 | 53 | 74 | |
82 | 78 | 90 | 79 | 21 | 34 | 64 |
8 | 12 | 13 | 15 | 25 | 17 | |
7 | 9 | 12 | 27 | 26 | 21 | |
10 | 11 | 19 | 8 | 7 | 5 |
CPU of Algorithm 1 | CPU of Algorithm 2 | ||||||
---|---|---|---|---|---|---|---|
min | ave | max | min | ave | max | ||
200 | 7 | 0.1774 | 0.2997 | 0.7437 | 0.2200 | 0.3867 | 1.0640 |
19 | 0.2357 | 0.2976 | 0.4157 | 0.3529 | 0.4372 | 0.6122 | |
23 | 0.3163 | 0.3416 | 0.3691 | 0.5212 | 0.5437 | 0.5634 | |
35 | 0.4258 | 0.4617 | 0.4898 | 0.7274 | 0.7665 | 0.7931 | |
46 | 0.5438 | 0.7598 | 1.6726 | 0.9814 | 1.2339 | 1.5569 | |
400 | 7 | 0.3684 | 0.4951 | 0.7386 | 0.6117 | 0.7653 | 0.9145 |
19 | 0.4843 | 0.6571 | 0.8787 | 0.8341 | 1.0164 | 1.2412 | |
23 | 0.6028 | 0.7053 | 1.0639 | 1.1206 | 1.2842 | 1.7052 | |
35 | 0.7610 | 0.9271 | 1.4268 | 1.4281 | 1.6534 | 2.1336 | |
46 | 0.9153 | 1.1397 | 1.5983 | 1.7811 | 2.0814 | 3.0258 | |
600 | 7 | 0.6473 | 0.7422 | 1.0708 | 1.2052 | 1.2830 | 1.5264 |
19 | 0.7788 | 0.9706 | 1.5706 | 1.5413 | 1.7291 | 2.4133 | |
23 | 1.0146 | 1.1945 | 1.5703 | 1.9720 | 2.2973 | 4.1754 | |
35 | 1.1692 | 1.6870 | 2.6565 | 2.4915 | 2.9876 | 4.5148 | |
46 | 1.3560 | 1.6802 | 2.6189 | 2.7533 | 3.1205 | 4.0006 | |
800 | 7 | 1.3822 | 1.7596 | 2.9700 | 2.9313 | 3.3962 | 4.2770 |
19 | 1.8140 | 2.6647 | 4.7241 | 3.7607 | 4.6007 | 5.5952 | |
23 | 2.0440 | 2.7970 | 3.8305 | 4.3696 | 5.1033 | 6.4268 | |
35 | 2.2852 | 2.5880 | 3.9130 | 4.9293 | 5.2313 | 5.6840 | |
46 | 2.3976 | 2.7193 | 4.1999 | 5.2605 | 5.9354 | 7.6332 | |
1000 | 7 | 3.9664 | 4.6102 | 5.9352 | 9.3543 | 9.9175 | 12.7181 |
19 | 4.2255 | 4.6904 | 5.2505 | 9.8872 | 10.5733 | 11.4234 | |
23 | 4.5886 | 4.9357 | 6.0811 | 10.8033 | 11.4962 | 15.7895 | |
35 | 5.0376 | 5.5177 | 7.3171 | 11.6566 | 12.3367 | 14.8367 | |
46 | 5.3083 | 5.7599 | 6.4271 | 12.4811 | 13.0953 | 14.4685 | |
1200 | 7 | 9.4020 | 11.6916 | 16.4927 | 14.0080 | 16.8438 | 21.0809 |
19 | 9.6212 | 11.4964 | 14.7645 | 14.8975 | 16.2413 | 18.4022 | |
23 | 9.8770 | 11.4983 | 15.3408 | 15.6348 | 17.3383 | 21.5357 | |
35 | 10.8521 | 11.8056 | 14.7564 | 16.5247 | 17.6264 | 19.2839 | |
46 | 10.8900 | 11.7488 | 12.8379 | 17.8773 | 18.9050 | 21.0399 | |
1400 | 7 | 18.3438 | 22.3562 | 33.2245 | 22.9130 | 27.1067 | 33.6057 |
19 | 18.0093 | 21.1386 | 28.2760 | 24.3032 | 26.4216 | 32.3352 | |
23 | 19.0598 | 20.1206 | 24.6603 | 24.2044 | 26.1036 | 30.6468 | |
35 | 19.6248 | 20.5885 | 26.4030 | 25.5290 | 26.4424 | 29.5598 | |
46 | 20.2367 | 21.2529 | 25.1075 | 26.8124 | 27.5080 | 29.2252 | |
1600 | 7 | 24.3825 | 28.5933 | 35.2687 | 27.8955 | 31.7924 | 35.7928 |
19 | 25.3655 | 26.5179 | 28.1867 | 29.7942 | 31.0178 | 32.6665 | |
23 | 26.0762 | 27.5465 | 30.2032 | 31.5580 | 32.6388 | 35.8208 | |
35 | 26.9154 | 28.2394 | 31.8867 | 32.0396 | 33.4994 | 35.7076 | |
46 | 27.6596 | 29.1840 | 35.7480 | 33.6663 | 35.2880 | 37.8210 | |
1800 | 7 | 32.1265 | 36.4415 | 47.7114 | 35.8050 | 40.1072 | 50.2326 |
19 | 32.9307 | 34.9354 | 40.2402 | 37.1589 | 39.1894 | 43.9375 | |
23 | 32.9574 | 35.9799 | 42.5340 | 38.4970 | 40.7730 | 47.6961 | |
35 | 34.8087 | 36.5571 | 39.8731 | 40.6130 | 42.1835 | 45.2329 | |
46 | 35.7117 | 37.8375 | 41.6455 | 41.4760 | 43.6270 | 45.9044 |
CPU of Algorithm 1 | CPU of Algorithm 2 | ||||||
---|---|---|---|---|---|---|---|
min | ave | max | min | ave | max | ||
200 | 7 | 0.2560 | 0.2938 | 0.3864 | 0.2082 | 0.2694 | 0.3556 |
19 | 0.3681 | 0.4525 | 0.6267 | 0.3567 | 0.4219 | 0.5697 | |
23 | 0.5035 | 0.5471 | 0.8365 | 0.5155 | 0.5585 | 0.7156 | |
35 | 0.6510 | 0.6993 | 0.8260 | 0.7385 | 0.7973 | 0.9962 | |
46 | 0.7851 | 0.8552 | 1.1812 | 0.9350 | 1.0005 | 1.1266 | |
400 | 7 | 1.2162 | 1.3856 | 1.8078 | 1.2118 | 1.2991 | 1.6526 |
19 | 1.4383 | 1.6922 | 2.4148 | 1.5410 | 1.8255 | 2.4314 | |
23 | 1.7991 | 2.2955 | 4.8562 | 1.9864 | 2.2877 | 2.7729 | |
35 | 2.0593 | 2.5262 | 3.4860 | 2.4157 | 2.8369 | 4.6875 | |
46 | 2.2577 | 2.7155 | 3.9557 | 2.7797 | 3.2972 | 4.0864 | |
600 | 7 | 1.8330 | 2.0841 | 2.8406 | 2.0888 | 2.4710 | 4.3851 |
19 | 2.1347 | 2.5783 | 4.3220 | 2.5958 | 3.0260 | 4.4506 | |
23 | 2.4840 | 3.0206 | 3.7853 | 3.0453 | 3.7215 | 4.7296 | |
35 | 2.7277 | 3.0337 | 4.2711 | 3.4734 | 3.8319 | 4.6743 | |
46 | 3.0436 | 3.4667 | 5.2598 | 4.0126 | 4.5317 | 6.1291 | |
800 | 7 | 3.4612 | 3.8030 | 4.8420 | 4.3228 | 5.0811 | 9.1788 |
19 | 4.0267 | 4.6951 | 5.8460 | 5.2678 | 6.0208 | 7.7749 | |
23 | 4.1744 | 5.0696 | 7.1361 | 5.6216 | 6.4516 | 8.2103 | |
35 | 4.3251 | 5.0799 | 7.4577 | 5.9949 | 6.7402 | 7.7306 | |
46 | 4.7400 | 5.2664 | 6.7092 | 6.6353 | 7.1462 | 8.3423 | |
1000 | 7 | 7.1940 | 8.3822 | 10.8126 | 7.7254 | 9.3606 | 13.4320 |
19 | 7.9808 | 9.1992 | 11.7655 | 8.7158 | 10.3472 | 12.5973 | |
23 | 7.7566 | 8.2500 | 9.5571 | 8.7284 | 9.6805 | 11.4939 | |
35 | 8.2859 | 9.4391 | 12.4033 | 9.8956 | 11.2440 | 14.9506 | |
46 | 8.7764 | 9.4443 | 10.9769 | 10.7814 | 11.6629 | 14.1304 | |
1200 | 7 | 19.7160 | 21.4685 | 24.9446 | 17.2613 | 19.8019 | 25.0173 |
19 | 19.3804 | 21.0536 | 25.3733 | 17.1724 | 19.3152 | 22.8843 | |
23 | 19.6164 | 20.8600 | 22.4987 | 18.1426 | 19.2179 | 21.0724 | |
35 | 20.6578 | 22.1495 | 26.7464 | 19.3835 | 20.3367 | 22.5411 | |
46 | 21.3446 | 22.2309 | 23.2110 | 20.6118 | 21.6691 | 23.4645 | |
1400 | 7 | 25.7501 | 28.5240 | 33.6090 | 22.1144 | 24.9513 | 30.0138 |
19 | 26.1913 | 27.2424 | 28.3921 | 23.0511 | 24.6753 | 27.1149 | |
23 | 27.4405 | 28.6227 | 30.1684 | 24.7625 | 25.9299 | 29.5416 | |
35 | 27.8198 | 29.4367 | 31.5362 | 25.3246 | 26.8058 | 30.7956 | |
46 | 29.1443 | 30.2465 | 33.2877 | 26.7806 | 28.5316 | 31.1388 | |
1600 | 7 | 27.2853 | 29.6356 | 33.5509 | 28.8794 | 32.4197 | 39.5174 |
19 | 27.5957 | 29.4912 | 31.6098 | 29.6950 | 31.4061 | 35.1885 | |
23 | 28.9769 | 30.1650 | 31.6810 | 31.2172 | 32.6932 | 38.5413 | |
35 | 29.5302 | 30.8947 | 33.0866 | 33.2494 | 34.1973 | 35.4664 | |
46 | 30.2623 | 32.5103 | 39.9005 | 34.0117 | 35.7329 | 40.2877 | |
1800 | 7 | 31.4170 | 35.6590 | 48.8139 | 36.2494 | 39.3941 | 51.7198 |
19 | 32.5265 | 34.3566 | 39.0429 | 36.8608 | 38.7472 | 40.8807 | |
23 | 33.4835 | 35.2512 | 39.2264 | 39.2339 | 40.6845 | 42.2809 | |
35 | 35.0957 | 36.9180 | 40.9085 | 41.6383 | 43.3374 | 47.0185 | |
46 | 36.1107 | 37.2882 | 39.0944 | 42.7363 | 44.9120 | 49.8094 |
CPU of Algorithm 1 | CPU of Algorithm 2 | ||||||
---|---|---|---|---|---|---|---|
min | ave | max | min | ave | max | ||
200 | 7 | 0.1644 | 0.2295 | 0.3673 | 0.2017 | 0.2988 | 0.6115 |
19 | 0.2583 | 0.2810 | 0.3323 | 0.3488 | 0.3776 | 0.4798 | |
23 | 0.3501 | 0.3984 | 0.5243 | 0.5198 | 0.5879 | 0.8461 | |
35 | 0.4715 | 0.5201 | 0.6056 | 0.7477 | 0.8059 | 1.0859 | |
46 | 0.6150 | 0.9036 | 1.3041 | 1.0083 | 1.3354 | 1.6907 | |
400 | 7 | 0.4787 | 0.5776 | 0.8025 | 0.6520 | 0.8205 | 1.1169 |
19 | 0.5781 | 0.6488 | 0.9687 | 0.8273 | 0.9017 | 1.4398 | |
23 | 0.7159 | 0.7606 | 0.9290 | 1.0689 | 1.1596 | 1.5978 | |
35 | 0.8800 | 0.9908 | 1.3700 | 1.3657 | 1.5304 | 2.3361 | |
46 | 1.0122 | 1.1861 | 1.6928 | 1.6289 | 1.7787 | 2.2620 | |
600 | 7 | 1.2740 | 1.4686 | 2.1558 | 2.0385 | 2.3889 | 3.7875 |
19 | 1.5067 | 1.7785 | 2.6780 | 2.5963 | 2.9535 | 4.0530 | |
23 | 1.7398 | 2.1118 | 3.0119 | 2.9240 | 3.4155 | 4.4226 | |
35 | 2.0562 | 2.7242 | 3.7269 | 3.5862 | 4.5978 | 5.7118 | |
46 | 2.3481 | 3.1100 | 4.7084 | 4.2361 | 5.2430 | 6.1953 | |
800 | 7 | 2.6546 | 3.4675 | 5.1269 | 4.4362 | 5.3880 | 7.2490 |
19 | 3.0512 | 3.9569 | 4.9959 | 5.1926 | 6.0761 | 7.0845 | |
23 | 3.1419 | 3.6941 | 5.2662 | 5.6052 | 6.3130 | 8.4620 | |
35 | 3.4184 | 3.7762 | 4.7588 | 6.1878 | 6.6297 | 7.9533 | |
46 | 3.6231 | 3.9221 | 5.1038 | 6.6183 | 7.2700 | 8.9901 | |
1000 | 7 | 6.0690 | 8.2522 | 12.4782 | 9.5774 | 11.8295 | 15.0412 |
19 | 6.3727 | 7.2305 | 8.4022 | 10.2436 | 11.4977 | 14.2660 | |
23 | 6.4809 | 7.0419 | 7.9854 | 10.6934 | 11.5947 | 13.4705 | |
35 | 6.9904 | 7.4870 | 8.9789 | 11.7009 | 12.6167 | 14.1152 | |
46 | 7.3904 | 8.0823 | 11.6773 | 12.6301 | 13.7278 | 16.0588 | |
1200 | 7 | 15.4206 | 17.5968 | 22.9041 | 17.6240 | 19.7965 | 27.7313 |
19 | 15.6379 | 16.1995 | 17.0367 | 17.2107 | 18.3928 | 20.9206 | |
23 | 16.1442 | 16.9836 | 18.6367 | 18.0681 | 19.3553 | 20.5493 | |
35 | 17.3559 | 18.0029 | 19.1652 | 19.3204 | 20.3263 | 21.4951 | |
46 | 17.7533 | 18.5459 | 19.8889 | 21.1646 | 21.9092 | 23.8463 | |
1400 | 7 | 22.6661 | 25.0604 | 32.0837 | 23.2173 | 26.1056 | 32.0133 |
19 | 22.2896 | 23.4033 | 26.1901 | 23.4637 | 24.7351 | 26.6533 | |
23 | 22.9604 | 23.4402 | 23.8200 | 24.1449 | 25.9237 | 28.4372 | |
35 | 23.9459 | 25.4409 | 35.2886 | 26.0647 | 27.1852 | 30.2367 | |
46 | 24.9069 | 25.6918 | 26.8693 | 27.6540 | 28.3296 | 31.1208 | |
1600 | 7 | 27.7084 | 29.5620 | 34.5762 | 29.0357 | 31.8625 | 38.9354 |
19 | 27.4759 | 29.6487 | 40.7330 | 29.7080 | 30.9598 | 33.3532 | |
23 | 28.6234 | 30.0695 | 31.8289 | 31.3310 | 32.9337 | 34.8635 | |
35 | 29.2710 | 30.9799 | 33.2976 | 32.3556 | 34.2822 | 35.5770 | |
46 | 31.0965 | 32.1412 | 34.0411 | 34.2652 | 36.1895 | 38.8007 | |
1800 | 7 | 35.8786 | 38.7141 | 45.0549 | 35.9549 | 39.3609 | 44.4885 |
19 | 36.0342 | 37.8711 | 40.8724 | 37.4281 | 39.1624 | 41.6080 | |
23 | 36.8003 | 38.8389 | 41.5131 | 38.7891 | 40.4470 | 43.2618 | |
35 | 37.7501 | 39.9583 | 42.2122 | 40.6191 | 42.5458 | 44.7960 | |
46 | 39.4025 | 40.9845 | 43.6278 | 42.4824 | 43.9993 | 45.4539 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, J.-D.; Lv, D.-Y.; Wei, C.-M.; Wang, J.-B. Research on Group Scheduling with General Logarithmic Deterioration Subject to Maximal Completion Time Cost. Axioms 2025, 14, 153. https://doi.org/10.3390/axioms14030153
Miao J-D, Lv D-Y, Wei C-M, Wang J-B. Research on Group Scheduling with General Logarithmic Deterioration Subject to Maximal Completion Time Cost. Axioms. 2025; 14(3):153. https://doi.org/10.3390/axioms14030153
Chicago/Turabian StyleMiao, Jin-Da, Dan-Yang Lv, Cai-Min Wei, and Ji-Bo Wang. 2025. "Research on Group Scheduling with General Logarithmic Deterioration Subject to Maximal Completion Time Cost" Axioms 14, no. 3: 153. https://doi.org/10.3390/axioms14030153
APA StyleMiao, J.-D., Lv, D.-Y., Wei, C.-M., & Wang, J.-B. (2025). Research on Group Scheduling with General Logarithmic Deterioration Subject to Maximal Completion Time Cost. Axioms, 14(3), 153. https://doi.org/10.3390/axioms14030153