Next Article in Journal
On the Complete Indeterminacy and the Chaoticity of the Generalized Heun Operator in Bargmann Space
Previous Article in Journal
A Tapestry of Ideas with Ramanujan’s Formula Woven In
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Enumerating the Number of Spanning Trees of Pyramid Graphs Based on Some Nonahedral Graphs

1
Department of Mathematics, Applied College at Mahail Aseer, King Khalid University, Abha 61421, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah Al-Nunawara 30001, Saudi Arabia
3
Department of Mathematics and Computer Sciences, Faculty of Science, Menoufia University, Shebin El Kom 32511, Egypt
*
Author to whom correspondence should be addressed.
Axioms 2025, 14(3), 148; https://doi.org/10.3390/axioms14030148
Submission received: 22 January 2025 / Revised: 5 February 2025 / Accepted: 17 February 2025 / Published: 20 February 2025
(This article belongs to the Section Algebra and Number Theory)

Abstract

:
The enumeration of spanning trees in various graph forms has been made easier by the study of electrically equivalent transformations, which was motivated by Kirchhoff’s work on electrical networks. In this work, using knowledge of difference equations, the electrically equivalent transformations and rules of weighted generating function are used to calculate the explicit formulas of the number of spanning trees of novel pyramid graph types based on some nonahedral graphs. Lastly, we compare our graphs’ entropy with that of other average-degree graphs that have been researched.

1. Introduction

Finding closed-form formulations for the complexity (number of spanning trees) in different graph types has attracted a lot of attention. Important applications of this field of study include counting Eulerian circuits [1,2], expanding network analysis techniques in psychological networks [3], enumerating chemical isomers [4,5], and tackling intractable problems such as the traveling salesman and Steiner tree problems [6]. Finding the most complex graphs can also be accomplished by looking at different kinds of graphs, which has uses in network resilience [7,8].
Because all nodes in a network represented by a graph must be able to communicate with one another, the graph must have a spanning tree. By increasing the number of spanning trees, dependability can be increased.
For a connected graph G = ( V , E ) with n vertices, the number of spanning trees can be found using a Kirchhoff classical result [9] from 1847. The Kirchhoff matrix is a characteristic matrix L = D A , where A is the adjacency matrix of G , and D   is the diagonal matrix of the degrees of G . The total number of spanning trees in graph G is equal to all of L ’s co-factors, L = [ a i j ] defined as follows:
L = [ a i j ] = deg ( v i )             i f   i = j 1                       i f   ( v i , v j ) E ( G ) 0                       i f   ( v i , v j ) E ( G )
In other words, the off-diagonal components are 1 for those that are present if an edge connects the two vertices and 0 otherwise, and the diagonal elements have values equal to the degree of the associated vertices. Many attempts have been made to count the complexity of some specialized graphs using various methodologies, but for a large generic graph, assessing the appropriate determinant is laborious and computationally unfeasible.
An additional approach to computation is as follows. Let indicate the matrix’s eigenvalues of a graph with vertices. Kelmans and Chelnokov [10] demonstrated in 1974 that
τ ( G ) = 1 n i = 1 n 1 μ i .
The deletion–contraction approach is a popular technique for determining the number of spanning tresses. The number of spanning trees τ ( G ) in a multigraph G can be determined using this reliable method. This method uses the fact that
τ ( G ) = τ ( G e ) + τ ( G / e )
where G e denotes the graph obtained by deleting an arbitrary edge e , and G / e denotes the graph obtained by contracting an arbitrary edge e [11,12]. A number of methods have been developed to determine the number of spanning trees of certain graphs; some of these methods are given in [13,14,15,16,17].
Kirchhoff was inspired to study electrical networks because an edge-weighted graph, whose weights indicate the conductance of the corresponding edges, may be viewed as an electrical network. The effect conductance between two vertices u   a n d   v can be expressed as the quotient of the (weighted) number of spanning trees and the (weighted) number of so-called thickets, which are spanning forests with exactly two components and the property that each component contains precisely one of the vertices u   a n d   v [18,19,20,21]. The impact of a few basic modifications on the quantity of spanning trees is listed below. The weighted number of spanning trees G is indicated by τ G and let G be an edge weighted graph and H be the associated electrically equivalent graph.
  • Parallel edges: When two parallel edges in G , each with conductances u and v , are merged into a single edge in H with a conductance of u + v , the count of spanning trees, τ ( H ) , remains unchanged compared to τ ( G ) .
  • Serial edges: If two serial edges in G , with conductances a and b , are combined into a single edge in H with a conductance of a b / ( a + b ) , then τ ( H ) can be calculated as ( 1 / ( a + b ) multiplied by τ ( G ) .
  • Δ-Y Transformation: When a triangle in G , with conductances a , b , and c is transformed into an electrically equivalent star graph in H with conductances u = ( ab + bc + c a ) / a , v = ( ab + bc + c a ) / b , and w = ( ab + bc + c a ) / c , the count of spanning trees in H ,   τ ( H ) , can be determined as ( ab + bc + c a ) 2 / a b c   multiplied by τ ( G ) .
  • Y-Δ Transformation: If a star graph in G , with conductances a , b , and c , is converted into an electrically equivalent triangle in H with conductances u = b c / ( a + b + c ) , v = a c / ( a + b + c ) , and w = a b / ( a + b + c ) , then τ ( H ) is given by 1 / ( a + b + c ) multiplied by τ ( G ) .

2. Main Results

The goal in mathematics is always to derive a new structure from an existing one. This is also true in the realm of graphs, where a specified collection of graphs can be utilized to generate a significant number of new graphs. In this work, we will find the exact formula for the number of spanning trees of three new types of pyramidal graphs produced from the three nonahedral graphs with nine vertices denoted by G 1   ,   G 2   , and G 3   shown in Figure 1.

2.1. Number of Spanning Trees of Pyramid Graph P 1 R n Based on Nonahedron Graph G 1

Using the graphs   P 1 R 1 (triangle or   K 3 ) and P 1 R 2 , the pyramid graph P 1 R n is defined recursively as follows: A copy of   P 1 R 2 is used to replace the middle triangle in   P 1 R to create the graph P 1 R 3 . Generally speaking, P 1 R n   is produced by substituting P 1 R 2 for the middle triangle P 1 R n 1 (see Figure 2). The total vertices   V ( P 1 R n ) and edges E ( P 1 R n ) , according to this construction, are V ( P 1 R n ) = 27 n 24 and E ( P 1 R n ) = 60 n 57 , n = 1 , 2 , The average degree of P 1 R n   is in the large n   limit, which is 4.44 .
Theorem 1.
The number of spanning trees in the pyramid graph   P 1 R n    for  n 1    is determined by
3 × ( 27232 ) n 1 [     7042221727 + 356052 391194307 724201   n 1   394513805 + 19948 391194307   299 11102 391194307       7042221727 + 356052 391194307   724201 n 1   400567658 + 20247 391194307   9373351   ] 2
[   46975785967481 + 2375080395 391194307 782388614   59342 + 3 391194307     n 2 +   46975785967481 2375080395 391194307 782388614   59342 3 391194307   n 2 ] 2
Proof. 
P 1 R j is changed to P 1 R j 1 using the electrically equivalent transformation. The conversion procedure from P 1 R 2 to P 1 R 1 is shown in Figure 3.
Applying the Δ-Y transformation rule, we obtain τ ( H 1 ) = 9 4 r 2 τ ( P 1 R 2 ) .
Using the rule of serial edges transformation, we obtain τ ( H 2 ) = ( 1 4 ) 9 ( 1 3 r 2 + 1 ) 3 τ ( H 1 ) .
Utilizing the Y-Δ transformation method, we obtain τ ( H 3 ) = ( 4 9 ) 3 ( 3 r 2 + 1 9 r 2 ) τ ( H 2 ) .
Using the transformation rule for parallel edges, we obtain τ ( H 4 ) = τ ( H 3 ) .
Utilizing the Δ-Y transformation method, we arrive at τ ( H 5 ) = 9 ( 45 4 ) 3 ( 4 r 2 + 1 3 r 2 + 1 ) τ ( H 4 ) .
When we use the Δ-Y transformation rule again, we obtain τ ( H 6 ) = ( 4 23 ) 9 ( 3 r 2 + 1 18 r 2 + 5 ) 3 τ ( H 5 ) .
By using the transformation rule for parallel edges, we obtain τ ( H 7 ) = τ ( H 6 ) .
When the Y-Δ transformation rule is applied, we obtain τ ( H 8 ) = ( 23 90 ) 3 18 r 2 + 5 18 ( 4 r 2 + 1 ) τ ( H 7 ) .
When the parallel edges transformation rule is used, we obtain τ ( H 9 ) = τ ( H 8 ) .
Using the Δ-Y transformation rule, we obtain τ ( H 10 ) = 9 ( 919 r 2 + 254 414 r 2 + 115 ) τ ( H 9 ) .
When the Y-Δ transformation rule is applied, we obtain τ ( H 11 ) = [ 23 ( 18 r 2 + 5 ) 4089 r 2 + 1132 ] 3 τ ( H 10 ) .
Using the transformation rule for parallel edges, we obtain τ ( H 12 ) = τ ( H 11 ) .
Utilizing the Y-Δ transformation method, we arrive at τ ( H 13 ) = 23 ( 4089 r 2 + 1132 ) 666 ( 919 r 2 + 254 ) τ ( H 12 ) .
By using the transformation rule for parallel edges, we obtain τ ( P 1 R 1 ) = τ ( H 14 ) .
When these fourteen transformations are combined, we obtain
τ P 1 R 2 = [ 1 9 4 r 2 × 4 9 × 3 r 2 + 1 3 × 9 4 3 × 9 r 2 3 r 2 + 1 × 4 45 3 × 3 r 2 + 1 9 4 r 2 + 1 × 23 4 9 × 18 r 2 + 5 3 a + 1 3 × 90 23 3 × 18 4 r 2 + 1 18 r 2 + 5 × 414 r 2 + 115 9 919 r 2 + 254 × 4089 r 2 + 1132 23 18 r 2 + 5 3 × 666 919 r 2 + 254 23 4089 r 2 + 1132 × 92648 r 2 + 25641 94047 r 2 + 26036 2 ] τ P 1 R 1 .
Thus,
τ ( P 1 R 2 ) = 27232 ( 94047 r 2 + 26036 ) 2 τ ( P 1 R 1 ) .
Further,
τ ( P 1 R n ) = i = 2 n 27232 ( 94047 r i + 26036 ) τ ( P 1 R 1 ) = 3 × ( 27232 ) n 1 r 1 2 [   i = 2 n ( 94047 r i + 26036 ) ] 2
where r i 1 = 92648 r i + 25641 94047 r i + 26036 ,   i = 2 , 3 , , n .
Its characteristic equation is 94047 ω 2 66612 ω 25641 = 0 with roots ω 1 = 11102 391194307 31349 and ω 1 = 11102 + 391194307 31349 .
Subtracting these two roots into both sides of r i 1 = 92648 r i + 25641 94047 r i + 26036 , we obtain
r i 1 11102 391194307 31349 = 92648 r i + 25641 94047 r i + 26036 11102 391194307 31349 = ( 59342 + 3 391194307 ) . r i 11102 391194307 31349 23 ( 4089 r i + 1132 )
r i 1 11102 + 391194307 31349 = 92648 r i + 25641 94047 r i + 26036 11102 + 391194307 31349 = ( 59342 3 391194307 ) . r i 11102 + 391194307 31349 23 ( 4089 r i + 1132 )
Let x i = r i 11102 391194307 31349 r i 11102 + 391194307 31349 . Then, by Equations (5) and (6), we obtain x i 1 = ( 7042221727 + 356252 391194307 724201 ) x i and x i = ( 7042221727 + 356252 391194307 724201 ) n i x n .
Therefore, r i = ( 7042221727 + 356252 391194307 724201 ) n i ( 11102 + 391194307 31349 ) x n ( 11102 391194307 31349 ) ( 7042221727 + 356252 391194307 724201 ) n i x n 1 .
Thus,
r 1 = ( 7042221727 + 356252 391194307 724201 ) n 1 ( 11102 + 391194307 31349 ) x n ( 11102 391194307 31349 ) ( 7042221727 + 356252 391194307 724201 ) n 1 x n 1 .
Using the expression r n 1 = 92648 r n + 25641 94047 r n + 26036 and denoting the coefficients of 92648 r n + 25641 and 94047 r n + 26036 as α n and β n , we have
94047 r n + 26036 = δ 0 92648 r n + 25641 + σ 0 94047 r n + 26036 , 94047 r n 1 + 26036 = δ 1 92648 r n + 25641 + σ 1 94047 r n + 26036 δ 0 92648 r n + 25641 + σ 0 94047 r n + 26036 , 94047 r n 2 + 26036 = δ 2 ( 92648 r n + 25641 ) + σ 2 ( 94047 r n + 26036 ) δ 1 ( 92648 r n + 25641 ) + σ 1 ( 94047 r n + 26036 ) , 94047 r n i + 26036 = δ i ( 92648 r n + 25641 ) + σ i ( 94047 r n + 26036 ) δ i 1 ( 92648 r n + 25641 ) + σ i 1 ( 94047 r n + 26036 ) ,
94047 r n ( i + 1 ) + 26036 = δ i + 1 ( 92648 r n + 25641 ) + σ i + 1 ( 94047 r n + 26036 ) δ i ( 92648 r n + 25641 ) + σ i ( 794047 r n + 26036 ) ,
94047 r 2 + 26036 = δ n 2 ( 92648 r n + 25641 ) + σ n 2 ( 94047 r n + 26036 ) δ n 3 ( 92648 r n + 25641 ) + σ n 3 ( 94047 r n + 26036 ) ,
Thus, we obtain
τ ( P 1 R n ) = 3 × ( 27232 ) n 1 r 1 2 [ δ n 2 ( 92648 r n + 25641 ) + σ n 2 ( 94047 r n + 26036 ) ] 2
where δ 0 = 0 ,   σ 0 = 1 and δ 1 = 94047 ,   σ 1 = 26036 . By the expression r n 1 = 92648 r n + 25641 94047 r n + 26036 and using Equations (8) and (9), we have
δ i + 1 = 118684 δ i 724201 δ i 1 ;   σ i + 1 = 118684 σ i 724201 σ i 1
The characteristic equation of Equation (11) is γ 2 118684 γ + 724201 = 0 with roots γ 1 = 59342 + 3 391194307 and γ 2 = 59342 3 391194307 .
The general solutions of Equation (11) are δ i = a 1 γ 1 i + a 2 γ 2 i ;   σ i = b 1 γ 1 i + b 2 γ 2 i .
Using the initial conditions δ 0 = 0 ,   σ 0 = 1 and δ 1 = 94047 ,   σ 1 = 26036 yields
δ i = 31349 391194307 782388614 ( 59342 + 3 391194307 ) i 31349 391194307 782388614 ( 59342 3 391194307 ) i ; σ i = ( 391194307 11102 391194307 782388614 ( 59342 + 3 391194307 ) i + ( 391194307 + 11102 391194307 782388614 ( 59342 3 391194307 ) i
There is no electrically comparable transformation for P 1 R n if r n = 1 . When we enter Equation (12) into Equation (10), we obtain
τ ( P 1 R n ) = 3 × ( 27232 ) n 1 [ 46975785967481 + 2375080395 391194307 782388614 59342 + 3 391194307 n 2 + 46975785967481 2375080395 391194307 782388614 59342 3 391194307 n 2 ] 2 ,   n 2
Equation (13) is satisfied for n = 1 . Consequently, the number of spanning trees in the pyramid graph P 1 R n is determined by
( P 1 R n ) = 3 × ( 27232 ) n 1 [ 46975785967481 + 2375080395 391194307 782388614 59342 + 3 391194307 n 2 + 46975785967481 2375080395 391194307 782388614 59342 3 391194307 n 2 ] 2 ,   n 1
where
r 1 = ( 7042221727 + 356052 391194307 724201 ) n 1 ( 394513805 + 19948 391194307 ) 299 ( 11102 391194307 ) 7042221727 + 356052 391194307 724201 n 1 400567658 + 20247 391194307 9373351 ,   n 1
Equation (15) can be inserted into Equation (14), yielding the desired result. □

2.2. Number of Spanning Trees of Pyramid Graph P 2 R n Based on the Nonahedron G 2

Using the graphs   P 2 R 1 (triangle or   K 3 ) and P 2 R 2 , the pyramid graph P 2 R n is defined recursively as follows: A copy of   P 2 R 2 is used to replace the middle triangle in   P 2 R 2 to create the graph P 2 R 3 . Generally speaking, P 2 R n is produced by substituting P 2 R 2 for the middle triangle P 2 R n 1 (see Figure 4). The total vertices   V ( P 2 R n ) and edges E ( P 2 R n ) , according to this construction, are V ( P 2 R n ) = 27 n 24 and E ( P 2 R n ) = 69 n 66 , n = 1 , 2 ,
The average degree of P 2 R n   is in the large n   limit, which is 5.11 .
Theorem 2.
The number of spanning trees in the pyramid graph   P 2 R n  for   n 1    is determined by
3 ×   957,440   n 1   150916709321 + 1165467 16767746169   6993800 n 1   50412258453 + 389329 16767746169 3638 29967 16767746169     9   150916709321 + 1165467 16767746169 6993800   n 1   5654310715 + 43663 16767746169   585557928 2 × [     195364 + 8432585344 3 5589248723     388489 + 3 16767746169 2   n 2 + 195364 8432585344 3 5589248723       388489 3 16767746169   2 n 2 ] 2
Proof. 
P 2 R j is changed to P 2 R j 1 using the electrically equivalent transformation. The conversion procedure from P 2 R 2 to P 2 R 1 is shown in Figure 5.
Utilizing the Δ-Y transformation method, we obtain τ ( H 1 ) = 9 4 r 2 τ ( P 2 R 2 ) .
Using the Y-Δ transformation rule, we have τ ( H 2 ) = ( 1 5 ) 9 ( 1 3 r 2 + 2 ) 3 τ ( H 1 ) .
Using the rule of parallel edges transformation, we obtain τ ( H 3 ) = τ ( H 2 ) .
When we use the Y-Δ transformation rule, we obtain τ ( H 4 ) = ( 5 18 ) 3 ( 3 r 2 + 2 18 r 2 ) τ ( H 3 ) .
Using the rule of parallel edges transformation, we obtain τ ( H 5 ) = τ ( H 4 ) .
When the Δ-Y transformation rule is applied, we obtain τ ( H 6 ) = 9 4 ( 8 5 ) 3 ( 5 r 2 + 3 3 r 2 + 2 ) 3 τ ( H 5 ) .
Using the Y-Δ transformation rule, we have τ ( H 7 ) = ( 5 34 ) 9 ( 3 r 2 + 2 21 r 2 + 13 ) 3 τ ( H 6 ) .
Applying the parallel edges transformation rule, we obtain τ ( H 8 ) = τ ( H 7 ) .
Utilizing the Y-Δ transformation method, we arrive at τ ( H 9 ) = ( 17 72 ) 3 21 r 2 + 13 18 ( 5 r 2 + 3 ) τ ( H 8 ) .
Using the transformation rule for parallel edges, we have τ ( H 10 ) = τ ( H 9 ) .
Using the Δ-Y transformation rule, we obtain τ ( H 11 ) = 9 ( 1579 r 2 + 987 714 r 2 + 442 ) τ ( H 10 ) .
Utilizing the Y-Δ transformation method, we obtain τ ( H 12 ) = ( 714 r 2 + 442 7101 r 2 + 4391 ) 3 τ ( H 11 ) .
By using the transformation rule for parallel edges, we obtain τ ( H 13 ) = τ ( H 12 ) .
Applying the Y-Δ transformation rule, we obtain τ ( H 14 ) = 17 ( 7101 r 2 + 4391 ) 495 ( 1597 r 2 + 987 ) τ ( H 13 ) .
Using the rule of parallel edges transformation, we have τ ( P 2 R 2 ) = τ ( H 14 ) .
When these fifteen transformations are combined, we obtain
τ ( P 2 R 2 ) = [ 1 9 4 a × 5 9 × ( 3 a + 2 ) 3 × ( 18 5 ) 3 × ( 18 a 3 a + 2 ) × 1 9 4 ( 5 8 ) 3 × ( 3 a + 2 ) ( 5 a + 3 ) × ( 34 5 ) 9 × ( 21 a + 13 3 a + 2 ) 3 × ( 72 17 ) 3 × ( 18 ( 5 a + 3 ) 21 a + 13 ) × ( 714 a + 442 ) 9 ( 1597 a + 987 ) × ( 7101 a + 4391 714 a + 442 ) 3 × 495 ( 1597 a + 987 ) 17 ( 7101 a + 4391 ) × ( 55 ( 4349 a + 2689 ) 34 ( 7101 a + 4391 ) ) 2 τ ( P 2 R 1 )
Thus,
τ ( P 2 R n ) = 957440 ( 241434 r 2 + 149294 ) 2 τ ( P 2 R 1 )
Further,
τ ( P 2 R n ) = i = 2 n 957440 ( 241434 r i + 149294 ) 2 τ ( P 2 R 1 )
              = 3 × ( 957440 ) n 1 r 1 2 [ i = 2 n ( 241434 r i + 149294 ) ] 2
where r i 1 = 239195 r i + 147985 241434 r i + 149294 ,   i = 2 , 3 , , n . Its characteristic equation is 241434 ω 2 89901 ω 147895 = 0 , with roots ω 1 = 29967 16767746169 160956 and ω 2 = 29967 + 16767746169 160956 . Subtracting these two roots into both sides of r i 1 = 239195 r i + 147895 241434 r i + 149294 , we obtain
  r i 1 29967 16767746169 160956 = 239195 r i + 147985 241434 r i + 149294 29967 16767746169 160956
= ( 388489 + 3 16767746169 ) . r i 29967 16767746169 160956 68 ( 7101 r i + 4391 )
r i 1 29967 + 16767746169 160956 = 239195 r i + 147985 241434 r i + 149294 29967 + 16767746169 160956
= ( 388489 3 16767746169 ) . r i 29967 + 16767746169 160956 68 ( 7101 r i + 4391 )
Let x i = r i 29967 16767746169 160956 r i 29967 + 16767746169 160956 . Then, by Equations (18) and (19), we obtain x i 1 = ( 150916709321 + 1165467 16767746169 6993800 ) x i and x i 1 = ( 150916709321 + 1165467 16767746169 6993800 ) n i x i
Therefore, r i = ( 150916709321 + 1165467 16767746169 6993800 ) n i ( 29967 + 16767746169 160956 ) x n 29967 16767746169 160956 ( 150916709321 + 1165467 16767746169 6993800 ) n i x n 1 .
Thus,
r 1 = (   150916709321 + 1165467 16767746169 6993800   ) n 1 (   29967 + 16767746169 160956   ) x n 29967 16767746169 160956 (   150916709321 + 1165467 16767746169 6993800   ) n 1 x n 1 .
Using the expression r n 1 = 239195 r n + 147895 241434 r n + 149294 and denoting the coefficients of 239195 r n + 147895 and 241434 r n + 149294 as α n and β n , we have
241434 r n + 149294 = δ 0 239195 r n + 147895 + σ 0 241434 r n + 149294 , 241434 r n 1 + 149294 = δ 1 239195 r n + 147895 + σ 1 241434 r n + 149294 δ 0 239195 r n + 147895 + σ 0 241434 r n + 149294 , 241434 r n 2 + 149294 = δ 2 239195 r n + 147895 + σ 2 241434 r n + 149294 δ 1 239195 r n + 147895 + σ 1 241434 r n + 149294
241434 r n i + 149294 = δ i ( 239195 r n + 147895 ) + σ i ( 241434 r n + 149294 ) δ i 1 ( 239195 r n + 147895 ) + σ i 1 ( 241434 r n + 149294 ) ,
241434 r n ( i + 1 ) + 149294 = δ i + 1 ( 239195 r n + 147895 ) + σ i + 1 ( 241434 r n + 149294 ) δ i ( 239195 r n + 147895 ) + σ i ( 241434 r n + 149294 ) ,
241434 r 2 + 149294 = δ n 2 ( 239195 r n + 147895 ) + σ n 2 ( 241434 r n + 149294 ) δ n 3 ( 239195 r n + 147895 ) + σ n 3 ( 241434 r n + 149294 ) ,
Thus, we obtain
τ ( P 2 R 2 ) = 3 × ( 957440 ) n 1 r 1 2 [ δ n 2 ( 239195 r n + 147895 ) + σ n 2 ( 241434 r n + 149294 ) ] 2
where δ 0 = 0 ,   σ 0 = 1 and δ 1 = 241434 ,   σ 1 = 149294 . By the expression r n 1 = 239195 r n + 147895 241434 r n + 149294 and using Equations (21) and (22), we have
δ i + 1 = 388489 δ i 3496900 δ i 1 ;   σ i + 1 = 388489 σ i 3496900 σ i 1
The characteristic equation of Equation (24) is γ 2 388489 γ + 3496900 = 0 with roots γ 1 = 388489 + 3 16767746169 2 and γ 2 = 388489 3 16767746169 2 . The general solutions of Equation (24) are δ i = a 1 γ 1 i + a 2 γ 2 i ; σ i = b 1 γ 1 i + b 2 γ 2 i .
Using the initial conditions δ 0 = 0 ,   σ 0 = 1 and δ 1 = 241434 ,   σ 1 = 149294 yields
δ i = 26826 16767746169 5589248723 ( 388489 + 3 16767746169 2 ) i 26826 16767746169 5589248723 ( 388489 3 16767746169 2 ) i ;
σ i = ( 5589248723 9989 16767746169 11178497446 ( 388489 + 3 16767746169 2 ) i + ( 5589248723 + 9989 16767746169 11178497446 ) ( 388489 3 16767746169 2 ) i
There is no electrically equivalent transformation in P 2 R n if r n = 1 . When we insert Equation (25) into Equation (23), we obtain
τ P 2 R n = 3 × ( 957440 ) n 1 [   195364 + 8432585344 3 5589248723     388489 + 3 16767746169 2   n 2 + 195364 8432585344 3 5589248723     388489 3 16767746169 2   n 2 ] 2 ,   n 2 .
Equation (26) is satisfied when n = 1 and τ ( P 2 R 1 ) = 3 . Consequently, the number of spanning trees of the pyramid graph P 2 R n is determined by
τ P 2 R n = 3 × ( 957440 ) n 1 [   195364 + 8432585344 3 5589248723 388489 + 3 16767746169 2   n 2 + 195364 8432585344 3 5589248723   388489 3 16767746169 2   n 2 ] 2 ,   n 1 .
where
  r 1 =   150916709321 + 1165467 16767746169 6993800   n 1   50412258453 + 389329 16767746169   3638   29967 16767746169   9   150916709321 + 1165467 16767746169 6993800   n 1   5654310715 + 43663 16767746169   585557928 ,   n 1 .
The required result is obtained by inserting Equation (28) into Equation (27). □

2.3. Number of Spanning Trees of Pyramid Graph P 3 R n Based on the Nonahedron Graph G 3

Using the graphs   P 3 R 1 (triangle or   K 3 ) and P 3 R 2 , the pyramid graph P 3 R n is defined recursively as follows: A copy of   P 3 R 2 is used to replace the middle triangle in   P 3 R 2 to create the graph P 3 R 3 . Generally speaking, P 3 R n is produced by substituting P 3 R 2 for the middle triangle P 3 R n 1 (refer to Figure 6). The total vertices   V ( P 3 R n ) and edges E ( P 3 R n ) , according to this construction, are V ( P 3 R n ) = 27 n 24 and E ( P 3 R n ) = 78 n 75 , n = 1 , 2 ,
The average degree of P 3 R n   is in the large n   limit, which is 5.78 .
Theorem 3.
The number of spanning trees in the pyramid graph   P 3 R n    for n 1    is determined by
3 × 71221248 n 1   628563359 + 25097 627267309 1296050   n 1 412155311 + 16565 627267309   + 1909   3155 627267309       628563359 + 25097 627267309 1296050   n 1   370187855 + 14656 627267309   + 47990351 2 [ (   47081 2 + 392999919 3 209089103 2   ) 25097 + 627267309   n 2 + (   47081 2 392999919 3 209089103 2   ) (   25097 627267309   ) n 2 ] 2
Proof. 
P 3 R j is changed to P 3 R j 1 using the electrically equivalent transformation. The conversion procedure from P 3 R 2 to P 3 R 1 is shown in Figure 7.
Utilizing the Δ-Y transformation method, we obtain τ ( H 1 ) = 9 9 ( ( 2 r 2 + 1 ) 2 r 2 ) 3 τ ( P 3 R 2 ) .
When the Y-Δ transformation rule is applied, we obtain τ ( H 2 ) = ( 1 7 ) 9 ( 1 4 r 2 + 3 ) 3 τ ( H 1 ) . Using the Y-Δ transformation rule again, we obtain τ ( H 3 ) = ( 1 5 ) 9 ( r 2 4 r 2 + 1 ) 3 τ ( H 2 ) .
By using the transformation rule for parallel edges, we have τ ( H 4 ) = τ ( H 3 ) .
By using the Δ-Y transformation rule, we obtain τ ( H 5 ) = 9 ( 81 7 ) 3 ( ( 2 r 2 + 1 ) 2 4 r 2 + 3 ) τ ( H 4 ) .
Utilizing the Y-Δ transformation method, we obtain τ ( H 6 ) = ( 35 207 ) 9 ( ( 4 r 2 + 1 ) ( 4 r 2 + 3 ) ( 2 r 2 + 1 ) 2 ( 12 r 2 + 11 ) ) 3 τ ( H 5 ) .
By using the transformation rule for parallel edges, we obtain τ ( H 7 ) = τ ( H 6 ) .
When we use the Y-Δ transformation rule, we obtain τ ( H 8 ) = ( 161 648 ) 3 ( 4 r 2 + 3 ) ( 12 r 2 + 11 ) 72 ( 2 r 2 + 1 ) 2 τ ( H 7 ) .
Using the rule of parallel edges transformation, we obtain τ ( H 9 ) = τ ( H 8 ) .
When the Δ-Y transformation rule is applied, we have τ ( H 10 ) = 9 ( 757 r 2 + 646 276 r 2 + 253 ) τ ( H 9 ) .
By utilizing the Y-Δ transformation rule, we obtain τ ( H 11 ) = [ 276 r 2 + 253 3279 r 2 + 2862 ] 3 τ ( H 10 ) .
Using the rule of parallel edges transformation, we obtain τ ( H 12 ) = τ ( H 11 ) .
By applying the Y-Δ transformation rule, we obtain τ ( H 13 ) = 23 ( 1093 r 2 + 954 ) 252 ( 757 r 2 + 646 ) τ ( H 12 ) . By applying the Transformation rule for parallel edges, we obtain τ ( P 3 R 1 ) = τ ( H 13 ) .
When we combine these fourteen transformations, we obtain
τ ( P 3 R 2 ) = r 2 3 9 9 ( 2 r 2 + 1 ) 6 × 7 9 × ( 4 r 2 + 3 ) 3 × 5 9 × ( 4 r 2 + 1 r 2 ) 3 × ( 7 81 ) 3 × ( 4 r 2 + 3 ) 9 ( 2 r 2 + 1 ) 2 × ( 207 35 ) 9 × ( ( 2 r 2 + 1 ) 2 ( 12 r 2 + 11 ) ( 4 r 2 + 1 ) ( 4 r 2 + 3 ) ) 3 × ( 648 161 ) 3 × ( 72 ( 2 r 2 + 1 ) 2 ( 4 r 2 + 3 ) ( 12 r 2 + 11 ) ) × ( 276 r 2 + 253 ) 9 ( 757 r 2 + 646 ) × ( 3279 r 2 + 2862 276 r 2 + 253 ) 3 × 252 ( 757 r 2 + 646 ) 23 ( 1093 r 2 + 954 ) × ( 28 ( 1009 r 2 + 877 ) 23 ( 1093 r 2 + 954 ) ) 2 · τ P 3 R 1
Thus, we have
τ ( P 3 R 2 ) = 71221248 ( 25139 r 2 + 21942 ) 2 τ ( P 3 R 1 ) .
Further,
                τ ( P 3 R n ) = i = 2 n 71221248 ( 25139   r i + 21942 ) 2 τ ( P 3 R 1 ) = 3 × ( 71221248 ) n 1 r 1 2 [ i = 2 n ( 25139   r i + 21942 ) ] 2
where r i 1 = 28252 r i + 24556 25139 r i + 21942 ,   i = 2 , 3 , , n .
Its characteristic equation is 25139 ω 2 6310 ω 24556 = 0 with roots ω 1 = 3155 627267309 25139 and ω 2 = 3155 + 627267309 25139 . Subtracting these two roots into both sides of r i 1 = 28252 r i + 24556 25139 r i + 21942 , we obtain
r i 1 3155 627267309 25139 = 28252 r i + 24556 25139 r i + 21942 3155 627267309 25139 = 25097 + 627267309 . r i 3155 627267309 25139 23 1093 r i + 954
r i 1 3155 + 627267309 25139 = 28252 r i + 24556 25139 r i + 21942 3155 + 627267309 25139 = 25097 627267309 . r i 3155 + 627267309 25139 23 1093 r i + 954  
Let x i = r i 3155 627267309 25139 r i 3155 + 627267309 25139 . Then, by Equations (31) and (32), we obtain x i 1 = ( 628563359 + 25097 627267309 1296050 ) x i and x i = ( 628563359 + 25097 627267309 1296050 ) n i x n .
Therefore, r i = ( 628563359 + 25097 627267309 1296050 ) n i ( 3155 + 627267309 25139 ) x n 3155 627267309 25139 ( 628563359 + 25097 627267309 1296050 ) n i x n 1 .
Thus,
r 1 = ( 628563359 + 25097 627267309 1296050 ) n 1 ( 3155 + 627267309 25139 ) x n 3155 627267309 25139 ( 628563359 + 25097 627267309 1296050 ) n 1 x n 1 .
Using the expression r n 1 = 28252 r n + 24556 25139 r n + 21942 and denoting the coefficients of 28252 r n + 24556 and 25139 r n + 21942 as δ n and σ n , we have
25139 r n + 21942 = δ 0 ( 28252 r n + 24556 ) + σ 0 ( 25139 r n + 21942 ) , 25139 r n 1 + 21942 = δ 1 ( 28252 r n + 24556 ) + σ 1 ( 25139 r n + 21942 ) δ 0 ( 28252 r n + 24556 ) + σ 0 ( 25139 r n + 21942 ) , 25139 r n 2 + 21942 = δ 2 ( 28252 r n + 24556 ) + σ 2 ( 25139 r n + 21942 ) δ 1 ( 28252 r n + 24556 ) + σ 1 ( 25139 r n + 21942 ) ,
25139 r n i + 21942 = δ i ( 28252 r n + 24556 ) + σ i ( 25139 r n + 21942 ) δ i 1 ( 28252 r n + 24556 ) + σ i 1 ( 25139 r n + 21942 ) ,
25139 r n ( i + 1 ) + 21942 = δ i + 1 ( 28252 r n + 24556 ) + σ i + 1 ( 25139 r n + 21942 ) δ i ( 28252 r n + 24556 ) + σ i ( 25139 r n + 21942 ) ,
25139 r 2 + 21942 = δ n 2 ( 28252 r n + 24556 ) + σ n 2 ( 25139 r n + 21942 ) δ n 3 ( 28252 r n + 24556 ) + σ n 3 ( 25139 r n + 21942 ) ,
Thus, we obtain
τ ( P 3 R n ) = 3 × ( 27232 ) n 1 r 1 2 [ δ n 2 ( 92648 r n + 25641 ) + σ n 2 ( 94047 r n + 26036 ) ] 2
where δ 0 = 0 ,   σ 0 = 1 and δ 1 = 25097 ,   σ 1 = 21942 . By the expression r n 1 = 92648 r n + 25641 94047 r n + 26036 and using Equations (34) and (35), we have
δ i + 1 = 50194 δ i 2592100 δ i 1 ; σ i + 1 = 50194 σ i 2592100 σ i 1
The characteristic equation of Equation (37) is γ 2 50194 γ + 2592100 = 0 with roots γ 1 = 25097 + 627267309 and γ 2 = 25097 + 627267309 .
The general solutions of Equation (37) are δ i = a 1 γ 1 i + a 2 γ 2 i ;   σ i = b 1 γ 1 i + b 2 γ 2 i .
Using the initial conditions δ 0 = 0 ,   σ 0 = 1 and δ 1 = 25139 ,   σ 1 = 21942 yields
δ i = 25139 627267309 1254534618 ( 25097 + 627267309 ) i 25139 627267309 1254534618 ( 25097 627267309 ) i ;
σ i = ( 627267309 3155 627267309 1254534618 ( 25097 + 627267309 ) i + ( 627267309 + 3155 627267309 1254534618 ( 25097 627267309 ) i
There is no electrically equivalent transformation for P 3 R n if r n = 1 . When we insert Equation (38) into Equation (36), we obtain
τ ( P 3 R n ) = 3 ×   71,221,248   n 1 [ (   47081 2 + 392999919 3 209089103 2   )   25097 + 627267309   n 2 + (   47081 2 392999919 3 209089103 2   ) (   25097 627267309   ) n 2 ] 2 ,   n 2 .
Equation (39) is satisfied for n = 1 . Consequently, the number of spanning trees in the pyramid graph P 3 R n is determined by
τ ( P 3 R n ) = 3 × 71221248 n 1 [ (   47081 2 + 392999919 3 209089103 2   )   25097 + 627267309   n 2 + (   47081 2 392999919 3 209089103 2   ) (   25097 627267309   ) n 2 ] 2 ,   n 1 .
where
r 1 =   628563359 + 25097 627267309 1296050   n 1   412155311 + 16565 627267309     + 1909     3155 627267309     628563359 + 25097 627267309 1296050   n 1   370187855 + 14656 627267309   + 47990351 ,   n 1
The required result is obtained by inserting Equation (41) into Equation (40). □

3. Numerical Results

The values of the number of spanning trees in the graphs τ ( P 1 R n ) ,   τ ( P 2 R n ) and τ ( P 3 R n ) are shown in the following three tables (Table 1, Table 2 and Table 3):

4. Spanning Tree Entropy

We may compute the spanning tree entropy Z , a finite number and an intriguing quantity describing the network structure, after we have precise formulas for the number of spanning trees of the three pyramid graphs, P 1 R n ,   P 2 R n , and P 3 R n . This is described in [22,23] as follows: Regarding a graph G ,
Z ( G ) = l i m n ln τ ( G ) V ( G ) .
Z P 1 R n = 1 27 l n 27232 + 2 l n 59342 + 3 391194307 = 1.244 ,
Z P 2 R n = 1 27 l n 239360 + 2 l n 388489 + 3 16767746169 = 1.463 ,
Z P 3 R n = 1 27 l n 71221248 + 2 l n 25097 + 627267309 = 1.471 .
When we contrast our graphs’ entropy values with those of other graphs, it is clear that the pyramid graph P 1 R n has a lower entropy than the remaining two pyramid graphs, P 2 R n and P 3 R n   . Furthermore, the entropy of the pyramid graph P 1 R n is lower than that of the apollonian graph [24], with average degree 5 (entropy 1.354), and higher than that of the fractal scale free lattice [25], with average degree 4 (entropy 1.04).

5. Conclusions

Using electrically equivalent transformations, this study counts the number of spanning trees in three types of three pyramid graphs based on several nonahedral graphs. The main benefit of this method is that it avoids complicated calculations involving Laplacian spectra, which are usually necessary in a generic approach to spanning tree determination.

Author Contributions

Conceptualization, A.A. and S.N.D.; Methodology, A.A. and S.N.D.; Software, A.A. and S.N.D.; Validation, A.A. and S.N.D.; Formal analysis, A.A. and S.N.D.; Investigation, S.N.D.; Resources, A.A. and S.N.D.; Data curation, A.A. and S.N.D.; Writing—original draft, A.A. and S.N.D.; Writing—review & editing, A.A. and S.N.D.; Visualization, S.N.D.; Supervision, S.N.D.; Project administration, A.A.; Funding acquisition, A.A. All authors have read and agreed to the published version of the manuscript.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Larg Groups (project under grant number RGP.2/372/45). Also, the authors would extend their gratitude to anonymous referees for their valuable feedback, which significantly enhanced the quality of the manuscript.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Zhang, F.; Yong, X. Asymptotic enumeration theorems for the number of spanning trees and Eulerian trail in circulant digraphs & graphs. Sci. China Ser. A 1999, 43, 264–271. [Google Scholar]
  2. Zhang, H.; Zhang, F.; Huang, Q. On the number of spanning trees and Eulerian torus in iterated line digraph. Discret. Appl. Math. 1997, 73, 59–67. [Google Scholar]
  3. Letina, S.; Blanken, T.F.; Deserno, M.K.; Borsboom, D. Expanding network analysis tools in psychological networks: Minimal spanning trees, participation coefficients, and motif analysis applied to a network of 26 psychological attributes. Complexity 2019, 2019, 9424605. [Google Scholar] [CrossRef]
  4. Nikolopoulos, S.D.; Palios, L.; Papadopoulos, C. Counting spanning trees using modular decomposition. Theor. Comput. Sci. 2014, 526, 41–57. [Google Scholar] [CrossRef]
  5. Knopfmacher, J. Asymptotic isomer enumeration in chemistry. J. Math. Chem. 1998, 24, 61–69. [Google Scholar] [CrossRef]
  6. Cook, W.J.; Applegate, D.L.; Bixby, R.E.; Chvatal, V. The Traveling Salesman Problem: A Computational Study; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
  7. Atajan, T.; Inaba, H. Network reliability analysis by counting the number of spanning trees. In Proceedings of the IEEE International Symposium on Communications and Information Technology, ISCIT 2004, Sapporo, Japan, 26–29 October 2004; pp. 601–604. [Google Scholar]
  8. Cașcaval, P. Approximate Method to Evaluate Reliability of Complex Networks. Complexity 2018, 2018, 596760. [Google Scholar] [CrossRef]
  9. Kirchhoff, G.G. Über die Auflösung der Gleichungen auf welche man bei der Untersucher der linearen Verteilung galuanischer Strome gefhrt wird. Ann. Phg. Chem. 1847, 72, 497–508. [Google Scholar] [CrossRef]
  10. Kelmans, A.K.; Chelnokov, V.M. A certain polynomial of a graph and graphs with an extremal number of trees. J. Comb. Theory B 1974, 16, 197–214. [Google Scholar] [CrossRef]
  11. Biggs, N.L. Algebraic Graph Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993; p. 205. [Google Scholar]
  12. Daoud, S.N. The Deletion—Contraction Method for Counting the Number of Spanning Trees of Graphs. Eur. Phys. J. Plus 2015, 130, 217. [Google Scholar] [CrossRef]
  13. Daoud, S.N. Complexity of Graphs Generated by Wheel Graph and Their Asymptotic Limits. J. Egypt. Math. Soc. 2017, 25, 424–433. [Google Scholar] [CrossRef]
  14. Daoud, S.N. Generating formulas of the number of spanning trees of some special graphs. Eur. Phys. J. Plus 2014, 129, 416. [Google Scholar] [CrossRef]
  15. Daoud, S.N. Number of Spanning Trees in Different Product of Complete and Complete Tripartite Graphs. Ars Comb. 2018, 139, 85–103. [Google Scholar]
  16. Liu, J.-B.; Daoud, S.N. Complexity of some of Pyramid Graphs Created from a Gear Graph. Symmetry 2018, 10, 689. [Google Scholar] [CrossRef]
  17. Daoud, S.N. Number of Spanning Trees of Cartesian and Composition Products of Graphs and Chebyshev Polynomials. IEEE Access 2019, 7, 71142–71157. [Google Scholar] [CrossRef]
  18. Teufl, E.; Wagner, S. Determinant identities for Laplace matrices. Linear Algebra Appl. 2010, 432, 441–457. [Google Scholar] [CrossRef]
  19. Daoud, S.N. Number of spanning Trees in the sequence of some Nonahedral graphs. Util. Math. 2020, 115, 1–18. [Google Scholar]
  20. Daoud, S.N.; Saleha, W. Complexity trees of the sequence of some nonahedral graphs generated by triangle. Heliyon 2020, 6, e04786. [Google Scholar] [CrossRef]
  21. Liu, J.-B.; Daoud, S.N. Number of Spanning Trees in the Sequence of Some Graphs. Complexity 2019, 2019, 4271783. [Google Scholar] [CrossRef]
  22. Wu, F.Y. Number of spanning trees on a lattice. J. Phys. A Math. Gen. 1977, 10, 113–115. [Google Scholar] [CrossRef]
  23. Lyons, R. Asymptotic enumeration of spanning trees. Combin. Probab. Comput. 2005, 14, 491–522. [Google Scholar] [CrossRef]
  24. Zhang, Z.; Wu, B.; Comellas, F. The number of spanning trees in Apollonian networks. Discret. Appl. Math. 2014, 169, 206–213. [Google Scholar] [CrossRef]
  25. Zhang, Z.; Liu, H.; Wu, B.; Zou, T. Spanning trees in a fractal scale—Free lattice. Phys. Rev. E 2011, 83, 016116. [Google Scholar] [CrossRef]
Figure 1. Three nonahedral graphs.
Figure 1. Three nonahedral graphs.
Axioms 14 00148 g001
Figure 2. Some samples of the pyramid graph P 1 R n .
Figure 2. Some samples of the pyramid graph P 1 R n .
Axioms 14 00148 g002
Figure 3. (a) The graph P 1 R 2 . (b) The graph H 1 . (c) The graph H 2 . (d) The graph H 3 . (e) The graph H 4 . (f) The graph H 5 . (g) The graph H 6 . (h) The graph H 7 . (i) The graph H 8 . (j) The graph H 9 . (k) The graph H 10 . (l) The graph H 11 . (m) The graph H 12 . (n) The graph H 13 . (o) The graph H 14 . The electrically equivalent transformations are from P 1 R 2 to P 1 R 1 .
Figure 3. (a) The graph P 1 R 2 . (b) The graph H 1 . (c) The graph H 2 . (d) The graph H 3 . (e) The graph H 4 . (f) The graph H 5 . (g) The graph H 6 . (h) The graph H 7 . (i) The graph H 8 . (j) The graph H 9 . (k) The graph H 10 . (l) The graph H 11 . (m) The graph H 12 . (n) The graph H 13 . (o) The graph H 14 . The electrically equivalent transformations are from P 1 R 2 to P 1 R 1 .
Axioms 14 00148 g003aAxioms 14 00148 g003bAxioms 14 00148 g003cAxioms 14 00148 g003dAxioms 14 00148 g003eAxioms 14 00148 g003fAxioms 14 00148 g003g
Figure 4. Some samples of the pyramid graph P 2 R n .
Figure 4. Some samples of the pyramid graph P 2 R n .
Axioms 14 00148 g004
Figure 5. (a) The graph P 2 R 2 . (b) The graph H 1 . (c) The graph H 2 . (d) The graph H 3 . (e) The graph H 4 . (f) The graph H 5 . (g) The graph H 6 . (h) The graph H 7 . (i) The graph H 8 . (j) The graph H 9 . (k) The graph H 10 . (l) The graph H 11 . (m) The graph H 12 . (n) The graph H 13 . (o) The graph H 14 . (p) The graph P 2 R 1 . The electrically equivalent transformations are from P 2 R 2 to P 2 R 1 .
Figure 5. (a) The graph P 2 R 2 . (b) The graph H 1 . (c) The graph H 2 . (d) The graph H 3 . (e) The graph H 4 . (f) The graph H 5 . (g) The graph H 6 . (h) The graph H 7 . (i) The graph H 8 . (j) The graph H 9 . (k) The graph H 10 . (l) The graph H 11 . (m) The graph H 12 . (n) The graph H 13 . (o) The graph H 14 . (p) The graph P 2 R 1 . The electrically equivalent transformations are from P 2 R 2 to P 2 R 1 .
Axioms 14 00148 g005aAxioms 14 00148 g005bAxioms 14 00148 g005cAxioms 14 00148 g005dAxioms 14 00148 g005eAxioms 14 00148 g005fAxioms 14 00148 g005g
Figure 6. Some samples of the pyramid graph P 3 R n .
Figure 6. Some samples of the pyramid graph P 3 R n .
Axioms 14 00148 g006
Figure 7. (a) The graph P 3 R 2 . (b) The graph H 1 . (c) The graph H 2 . (d) The graph H 3 . (e) The graph H 4 . (f) The graph H 5 . (g) The graph H 6 . (h) The graph H 7 . (i) The graph H 8 . (j) The graph H 9 . (k) The graph H 10 . (l) The graph H 11 . (m) The graph H 12 . (n) The graph H 13 . (o) The graph P 3 R 1 . The electrically equivalent transformations are from P 3 R 2 to P 3 R 1 .
Figure 7. (a) The graph P 3 R 2 . (b) The graph H 1 . (c) The graph H 2 . (d) The graph H 3 . (e) The graph H 4 . (f) The graph H 5 . (g) The graph H 6 . (h) The graph H 7 . (i) The graph H 8 . (j) The graph H 9 . (k) The graph H 10 . (l) The graph H 11 . (m) The graph H 12 . (n) The graph H 13 . (o) The graph P 3 R 1 . The electrically equivalent transformations are from P 3 R 2 to P 3 R 1 .
Axioms 14 00148 g007aAxioms 14 00148 g007bAxioms 14 00148 g007cAxioms 14 00148 g007dAxioms 14 00148 g007eAxioms 14 00148 g007fAxioms 14 00148 g007g
Table 1. Some of the numbers for the pyramid graph P 1 R n   spanning tree count.
Table 1. Some of the numbers for the pyramid graph P 1 R n   spanning tree count.
n τ ( P 1 R n )
1 3
2 1143113921315616
3 438438410660716022997505920000
4 168161983986515450812582299101145757657104384
5 64498119168340467997985645986021262803178601450308845436928
Table 2. Some of the numbers for the pyramid graph P 2 R n   spanning tree count.
Table 2. Some of the numbers for the pyramid graph P 2 R n   spanning tree count.
n τ ( P 2 R n )
1 3
2 430384603156992000
3 62187850842989824664738849095680000
4 8985752296080390697989319384524764628137489203200000
5 1298384543480766519788609688350620309789464460683800400906682368000000
Table 3. Some of the numbers for the pyramid graph P 3 R n   spanning tree count.
Table 3. Some of the numbers for the pyramid graph P 3 R n   spanning tree count.
n τ ( P 3 R n )
1 3
2 595840848878370816
3 106707180749521149279206454746677248
4 19107851727493992841163289907951233946454397491871744
4 3421606268097367048895726265969595422130168100899195236894586523615232
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Asiri, A.; Daoud, S.N. Enumerating the Number of Spanning Trees of Pyramid Graphs Based on Some Nonahedral Graphs. Axioms 2025, 14, 148. https://doi.org/10.3390/axioms14030148

AMA Style

Asiri A, Daoud SN. Enumerating the Number of Spanning Trees of Pyramid Graphs Based on Some Nonahedral Graphs. Axioms. 2025; 14(3):148. https://doi.org/10.3390/axioms14030148

Chicago/Turabian Style

Asiri, Ahmad, and Salama Nagy Daoud. 2025. "Enumerating the Number of Spanning Trees of Pyramid Graphs Based on Some Nonahedral Graphs" Axioms 14, no. 3: 148. https://doi.org/10.3390/axioms14030148

APA Style

Asiri, A., & Daoud, S. N. (2025). Enumerating the Number of Spanning Trees of Pyramid Graphs Based on Some Nonahedral Graphs. Axioms, 14(3), 148. https://doi.org/10.3390/axioms14030148

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop