Abelian Function Fields on Jacobian Varieties
Abstract
:1. Introduction
n, s | co-prime natural numbers |
non-negative integers | |
≡ | means ‘defined by’ |
an algebraic curve, assumed to be in the canonical form | |
the n-th symmetric product of | |
g | the genus of |
a vector of parameters (= coefficients of the equation) of | |
a Weierstrass gap sequence | |
an ordered list of monomials on | |
, | first kind not normalized -, and -period matrices |
, | second kind not normalized -, and -period matrices |
the Jacobian variety of , w.r.t. not normalized periods | |
the Kummer variety of | |
first kind (or holomorphic) differentials on | |
second kind differentials on | |
, | the Abel image (or first kind integral) of a point P and a divisor D |
, | the second kind integral at a point P, and a divisor D |
the theta divisor defined by | |
differential field of ℘-functions on | |
a polynomial function of weight w from | |
the vector space of polynomial functions on | |
, …, | basis monomials in |
2. Preliminaries
2.1. Canonical Form of Plane Algebraic Curves
2.2. Sato Weight
2.3. Cohomology Basis
2.4. Examples
- -Curves. The canonical form of genus g hyperelliptic curves is defined by
- -Curves. The canonical trigonal curve of genus is defined by
2.5. Abel Map
2.6. Theta Function
2.7. Sigma Function
2.8. Vector of Riemann Constants
2.9. Multiply Periodic ℘-Functions
2.10. Divisor Classes
2.11. Polynomial Functions on a Curve
3. Abelian Function Fields Associated with Curves
3.1. Jacobi Inversion Problem
- -Curves. A solution of the Jacobi inversion problem on hyperelliptic curves was given in ([1], § 216), see also ([9], Theorem 2.2). On a curve defined by (11), the divisor D such that is obtained from the system
- -Curves. On the canonical -curve defined by (16), the pre-image D of is given by the system
- -Curve. A solution of the Jacobi inversion problem on defined by (13) is given by the system
3.2. Basis Functions
3.3. The Klein Formula Technique
3.4. The Residue Theorem Technique
- -Curve. On the curve defined by (18), with the first and second kind differentials (20), by means of (55) we obtain the second kind integrals
3.5. Identities for ℘-Functions: Hyperelliptic Case
- every 4-index function is represented as a polynomial in with coefficients in ;
- every product is represented as a polynomial in with coefficients in .
3.6. Identities for ℘-Functions: Non-Hyperelliptic Case
4. Algebraic Models of Jacobian Varieties
4.1. Hyperelliptic Case
4.2. Trigonal Case
0 | 1 | |||
- g equations on a -curve;
- equations on a -curve, which contain , with , …, , and with , …, g;
- equations on a -curve, which contain , with , …, , and with , …, g.
- -Curve. Equations obtained from (70) have the form
4.3. Identities for ℘-Functions on
5. Algebraic Models of Kummer Variety
- -Curve. Equations which define can be constructed as follows
6. Addition Laws on Jacobian Varieties
- the addition formula for the -function
- the addition formula for the -function, derived from (90),
6.1. Groupoid Structure of Jacobian Varieties
- 1.
- , provided ,
- 2.
- , provided .
- -Curve. Let D, , and , . Each divisor is defined by the two functions , of the form (49), computed at u, and , or by the two collections of basis ℘-functions:
6.2. Polylinear Relations
6.3. Bilinear Relations and Baker–Hirota Operators
6.4. Trilinear Relations and Addition Laws
6.5. Addition Formulas for -Function
7. Dynamical Equations and Other Applications
8. Discussion
Funding
Conflicts of Interest
References
- Baker, H.F. Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions; Cambridge University Press: Cambridge, UK, 1897. [Google Scholar]
- Baker, H.F. Multiply Periodic Functions; Cambridge University Press: Cambridge, UK, 1907. [Google Scholar]
- Buchstaber, V.M.; Enolskii, V.Z.; Leykin, D.V. Multi-dimensional sigma functions. arXiv 2012, arXiv:1208.0990. [Google Scholar]
- Buchstaber, V.M.; Enolskii, V.Z.; Leykin, D.V. σ-Functions: Old and new results. In Integrable Systems and Algebraic Geometry; Donagi, R., Shaska, T., Eds.; Cambridge University Press: Cambridge, UK, 2020; Volume 2, pp. 175–214. [Google Scholar]
- Komeda, J.; Matsutani, S.; Previato, E. Algebraic construction of the sigma function for general Weierstrass curves. Mathematics 2022, 10, 3010. [Google Scholar] [CrossRef]
- Klein, F. Über hyperelliptische Sigmafunktionen. Math. Ann. 1886, 27, 431–464. [Google Scholar] [CrossRef]
- Klein, F. Über hyperelliptische Sigmafunktionen II. Math. Ann. 1888, 32, 351–380. [Google Scholar] [CrossRef]
- Klein, F. Zur Theorie der Abel’schen Functionen. Math. Ann. 1890, 36, 1–83. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Enolskii, V.Z.; Leykin, D.V. Hyperelliptic Kleinian Functions and Applications, Preprint ESI 380 (1996), Vienna; Also Published in Solitons, Geometry, and Topology: On the Crossroads. AMS Translations—Ser. 2, Vol. 179; Buchstaber, V.M., Novikov, S.P., Eds.; American Mathematical Society: Providence, RI, USA, 1997; pp. 1–33. [Google Scholar]
- Weierstrass, K. Theorie der Hyperelliptischen Funktionen. In Mathematische Werke, Bd. 3; Teubner: Berlin, Germany, 1903; pp. 289–295. [Google Scholar]
- Bolza, O. On the first and second logarithmic derivatives of hyperelliptic σ-functions. Am. J. Math. 1895, 17, 11–36. [Google Scholar] [CrossRef]
- Bolza, O. The partial differential equations for the hyperelliptic θ- and σ-functions. Am. J. Math. 1899, 21, 107–125. [Google Scholar] [CrossRef]
- Baker, H.F. On the hyperelliptic sigma functions. Math. Ann. 1898, 50, 462–472. [Google Scholar] [CrossRef]
- Baker, H.F. On a system of differential equations leading to periodic functions. Acta Math. 1903, 27, 135–156. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Enolskii, V.Z.; Leykin, D.V. Rational analogs of abelian functions. Funct. Anal. Appl. 1999, 33, 83–94. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Leykin, D.V. Polynomial Lie algebras. Funct. Anal. Appl. 2002, 36, 267–280. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Leykin, D.V. Heat equations in a nonholonomic frame. Funct. Anal. Appl. 2004, 38, 88–101. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Leykin, D.V. Solution of the problem of differentiation of Abelian functions over parameters for families of (n,s)-curves. Funct. Anal. Appl. 2008, 42, 268–278. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Enolskii, V.Z.; Leykin, D.V. A recursive family of differential polynomials generated by Sylvester’s identity and addition theorems for hyperelliptic Kleinian functions. Funct. Anal. Appl. 1997, 31, 240–251. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Enolskii, V.Z.; Leykin, D.V. Uniformization of Jacobi varieties of trigonal curves and nonlinear differential equations. Funct. Anal. Appl. 2000, 34, 159–171. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Leykin, D.V. Hyperelliptic addition law. J. Nonlinear Math. Phys. 2005, 12, 106–123. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Leykin, D.V. Addition laws on Jacobian varieties of plane algebraic curves. Proc. Steklov Inst. Math. 2005, 251, 49–120. [Google Scholar]
- Eilbeck, J.C.; Enolskii, V.Z.; Leykin, D.V. On the Kleinian construction of abelian functions of canonical algebraic curves. In SIDE III—Symmetries and Integrability of Difference Equations. CRM Proc. Lecture Notes; Levi, D., Ragnisco, O., Eds.; American Mathematical Society: Providence, RI, USA, 2000; Volume 25, pp. 121–138. [Google Scholar]
- Athorne, C.; Eilbeck, J.C.; Enolskii, V.Z. Identities for the classical genus two ℘-function. J. Geom. Phys. 2003, 48, 354–368. [Google Scholar] [CrossRef]
- Athorne, C.; Eilbeck, J.C.; Enolskii, V.Z. A SL(2) covariant theory of genus 2 hyperelliptic functions. Math. Proc. Camb. Philos. Soc. 2004, 136, 269–286. [Google Scholar] [CrossRef]
- Athorne, C. Identities for hyperelliptic ℘-functions of genus one, two and three in covariant form. J. Phys. A Math. Theor. 2008, 41, 415202. [Google Scholar] [CrossRef]
- Athorne, C. A generalization of Baker’s quadratic formulae for hyperelliptic ℘-functions. Phys. Lett. A 2011, 375, 2689–2693. [Google Scholar] [CrossRef]
- Athorne, C. On the equivariant algebraic Jacobian for curves of genus two. J. Geom. Phys. 2012, 62, 724–730. [Google Scholar] [CrossRef]
- Baldwin, S.; Gibbons, J. Genus 4 trigonal reduction of the Benney equations. J. Phys. A 2006, 39, 3607–3639. [Google Scholar] [CrossRef]
- Baldwin, S.; Eilbeck, J.C.; Gibbons, J.; Onishi, Y. Abelian functions for cyclic trigonal curves of genus four. J. Geom. Phys. 2008, 58, 450–467. [Google Scholar] [CrossRef]
- Eilbeck, J.C.; Enolskii, V.Z.; Previato, E. On a generalized Frobenius—Stickelberger addition formula. Lett. Math. Phys. 2003, 63, 5–17. [Google Scholar] [CrossRef]
- Eilbeck, J.C.; Enolski, V.Z.; Matsutani, S.; Onishi, Y.; Previato, E. Abelian functions for trigonal curves of genus three. Int. Math. Res. Not. 2007, 2007, rnm140. [Google Scholar] [CrossRef]
- Eilbeck, J.C.; Enolski, V.Z.; Matsutani, S.; Onishi, Y.; Previato, E. Addition formulae over the Jacobian pre-image of hyperelliptic Wirtinger varieties. J. Reine Angew. Math. 2009, 619, 37–48. [Google Scholar] [CrossRef]
- Eilbeck, J.C.; Enolski, V.; Gibbons, J. Sigma, tau and Abelian functions of algebraic curves. J. Phys. A Math. Theor. 2010, 43, 455216. [Google Scholar] [CrossRef]
- Eilbeck, J.C.; England, M.; Onishi, Y. Abelian functions associated with genus three algebraic curves. LMS J. Comput. Math. 2011, 14, 291–326. [Google Scholar] [CrossRef]
- Eilbeck, J.C.; Gibbons, J.; Ônishi, Y.; Yasuda, S. Theory of heat equations for sigma functions. arXiv 2017, arXiv:1711.08395. [Google Scholar]
- England, M.; Eilbeck, J.C. Abelian functions associated with a cyclic tetragonal curve of genus six. J. Phys. A Math. Theor. 2009, 42, 095210. [Google Scholar] [CrossRef]
- England, M.; Gibbons, J. A genus six cyclic tetragonal reduction of the Benney equations. J. Phys. A Math. Theor. 2009, 42, 375202. [Google Scholar] [CrossRef]
- England, M.; Athorne, C. Building abelian functions with generalised Baker-Hirota operators. Symmetry Integr. Geom. Methods Appl. 2012, 8, 037. [Google Scholar] [CrossRef]
- England, M. Higher genus Abelian functions associated with cyclic trigonal curves. Symmetry Integr. Geom. Methods Appl. 2010, 6, 025. [Google Scholar] [CrossRef]
- England, M. Deriving bases for Abelian functions. Comput. Methods Funct. Theor. 2011, 11, 617–654. [Google Scholar] [CrossRef]
- Nakayashiki, A. On algebraic expressions of sigma functions for (n,s)-curves. Asian J. Math 2010, 14, 175–212. [Google Scholar] [CrossRef]
- Nakayashiki, A. On hyperelliptic abelian functions of genus 3. J. Geom. Phys. 2011, 61, 961–985. [Google Scholar] [CrossRef]
- Nakayashiki, A. Sigma function as a tau function. Int. Math. Res. Not. 2010, 2010, 373–394. [Google Scholar] [CrossRef]
- Nakayashiki, A. Tau function approach to theta functions. Int. Math. Res. Not. 2016, 2016, 5202–5248. [Google Scholar] [CrossRef]
- Komeda, J.; Matsutani, S.; Previato, E. The sigma function for Weierstrass semigroups 〈3,7,8〉 and 〈6,13,14,15,16〉. Int. J. Math. 2013, 24, 1350085. [Google Scholar] [CrossRef]
- Komeda, J.; Matsutani, S.; Previato, E. The sigma function for trigonal cyclic curves. Lett. Math. Phys. 2019, 109, 423–447. [Google Scholar] [CrossRef]
- Matsutani, S.; Komeda, J. Sigma functions for a space curve of type (3,4,5). J. Geom. Symmetry Phys. 2013, 30, 75–91. [Google Scholar]
- Bernatska, J.; Leykin, D. On degenerate sigma-function in genus 2. Glasg. Math. J. 2019, 61, 169–193. [Google Scholar] [CrossRef]
- Suzuki, J. Klein’s fundamental 2-form of second kind for the Ca,b curves. Symmetry Integr. Geom. Methods Appl. 2017, 13, 017. [Google Scholar]
- Jacobi, C.G.J. De functionibus duarum variabilium quadrupliciter periodicis, quibus theoria transcendentium Abelianarum innititur. J. Reine Angew. Math. 1835, 13, 55–78. [Google Scholar]
- Bernatska, J.; Leykin, D. On regularization of second kind integrals. SIGMA 2018, 14, 074. [Google Scholar] [CrossRef]
- Weierstrass, K. Zur Theorie der elliptischen Funktionen. In Mathematische Werke, Bd. 2; Teubner: Berlin, Germany, 1894; pp. 245–255. [Google Scholar]
- Eilbeck, J.C.; Onishi, Y. Recursion relations on the power series expansion of the universal Weierstrass sigma function. RIMS Kôkyûroku Bessatsu 2020, B78, 077–099. [Google Scholar]
- Buchstaber, V.M.; Bunkova, E.Y. Sigma functions and Lie algebras of Schrödinger operators. Funct. Anal. Appl. 2020, 54, 229–240. [Google Scholar] [CrossRef]
- Harnad, J.; Enolski, V.Z. Schur function expansions of KP τ-functions associated to algebraic curves. Russian Math. Surv. 2011, 66, 767–807. [Google Scholar] [CrossRef]
- Ayano, T. Sigma functions for telescopic curves. Osaka J. Math. 2014, 51, 459–480. [Google Scholar]
- Korotkin, D.; Shramchenko, V. On higher genus Weierstrass sigma-function. Phys. D 2012, 241, 12086–12094. [Google Scholar] [CrossRef]
- Dubrovin, B.A. Theta functions and non-linear equations. Russ. Math. Surv. 1981, 36, 11–80. [Google Scholar] [CrossRef]
- Fay, J.D. Theta Functions on Riemann Surfaces, Lectures Notes in Mathematics; Springer: Berlin, Germany, 1973; Volume 352. [Google Scholar]
- Matsutani, S.; Previato, E. Jacobi inversion on strata of the Jacobian of the Crs curve yr=f(x), II. J. Math. Soc. 2014, 66, 647–692. [Google Scholar]
- Matsutani, S.; Previato, E. Jacobi inversion on strata of the Jacobian of the Crs curve yr=f(x). J. Math. Soc. 2008, 60, 1009–1044. [Google Scholar]
- Enolski, V.; Hartmann, B.; Kagramanova, V.; Kunz, J.; Lammerzahl, C.; Sirimachan, P. Inversion of a general hyperelliptic integral and particle motion in Hořava-Lifshitz black hole space-times. J. Math. Phys. 2012, 53, 012504. [Google Scholar] [CrossRef]
- Bernatska, J.; Leykin, D. Solution of the Jacobi inversion problem on non-hyperelliptic curves. Lett. Math. Phys. 2023, 113, 110. [Google Scholar] [CrossRef]
- Mumford, D. Tata Lectures on Theta II. Progress in Mathematics; Birkhäuser: Boston, MA, USA, 1984; Volume 43. [Google Scholar]
- Uchida, Y. Division polynomials and canonical local heights on hyperelliptic Jacobians. Manuscripta Math. 2011, 134, 273–308. [Google Scholar] [CrossRef]
- Frobenius, F.G.; Stickelberger, L. Zur Theorie der elliptischen Functionen. J. Reine Angew. Math. 1877, 83, 175–179. [Google Scholar]
- Kiepert, L. Wirkliche Ausfuḧrung der ganzzahlingen Multiplikation der elliptichen Funktionen. J. Reine Angew. Math. 1873, 76, 21–33. [Google Scholar]
- Onishi, Y. Determinant expressions for abelian functions in genus two. Glasgow Math. J. 2002, 44, 353–364. [Google Scholar] [CrossRef]
- Onishi, Y. Determinant expressions for hyperelliptic functions in genus three. Tokyo J. Math. 2004, 27, 299–312. [Google Scholar] [CrossRef]
- Onishi, Y. Determinant expressions for hyperelliptic functions. Proc. Edinb. Math. Soc. 2005, 48, 705–742. [Google Scholar] [CrossRef]
- Belokolos, E.D.; Bobenko, A.I.; Enolski, V.Z.; Its, A.R.; Matveev, V.B. Algebro-Geometric Approach to Nonlinear Integrable Equations; Springer: Berlin, Germany, 1994. [Google Scholar]
- Bernatska, J. Reality conditions for the KdV equation and exact quasi-periodic solutions in finite phase spaces. J. Geom. Phys. 2024, 206, 105322. [Google Scholar] [CrossRef]
- Bernatska, J. Computation of ℘-functions on plane algebraic curves. arXiv 2024, arXiv:2407.05632. [Google Scholar]
- Matsutani, S. A numerical representation of hyperelliptic KdV solutions. Commun. Nonlinear Sci. Numer. Simul. 2024, 138, 108259. [Google Scholar] [CrossRef]
- Matsutani, S.; Previato, E. An algebro-geometric model for the shape of supercoiled DNA. Physica D 2022, 430, 133073. [Google Scholar] [CrossRef]
- Matsutani, S. Hyperelliptic solutions of modified Korteweg–de Vries equation of genus g: Essentials of the Miura transformation. J. Phys. A Math. Gen. 2002, 35, 4321–4333. [Google Scholar] [CrossRef]
- Buchstaber, V.M.; Mikhailov, A.V. Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves. Russ. Math. Surv. 2018, 76, 587–652. [Google Scholar] [CrossRef]
- Bunkova, E.Y. On the problem of differentiation of hyperelliptic functions. Eur. J. Math. 2019, 5, 712–719. [Google Scholar] [CrossRef]
- Mumford, D. Tata Lectures on Theta III. Progress in Mathematics; Birkhäuser: Boston, MA, USA, 1991; Volume 97. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernatska, J. Abelian Function Fields on Jacobian Varieties. Axioms 2025, 14, 90. https://doi.org/10.3390/axioms14020090
Bernatska J. Abelian Function Fields on Jacobian Varieties. Axioms. 2025; 14(2):90. https://doi.org/10.3390/axioms14020090
Chicago/Turabian StyleBernatska, Julia. 2025. "Abelian Function Fields on Jacobian Varieties" Axioms 14, no. 2: 90. https://doi.org/10.3390/axioms14020090
APA StyleBernatska, J. (2025). Abelian Function Fields on Jacobian Varieties. Axioms, 14(2), 90. https://doi.org/10.3390/axioms14020090