Positive Definite Solution of System of Matrix Equations with X−k and Y−l via Coupled Fixed Point Theorem in Partially Ordered Spaces
Abstract
:1. Introduction
- If , then if and .
- If and , then if and .
- If and , then if and .
2. Materials and Methods
Matrix Equations
- (i)
- , are continuous maps.
- (ii)
- If , , then the following are true:
- , provided that .
- , provided that .
- and .
- and .
- (I)
- A priori error estimate:
- (II)
- A posteriori error estimate:
- (III)
- The rate of convergence:
- is a unique coupled fixed point.
- If , then .
- (i)
- and are continuous maps.
- (ii)
- If , , then the following are true:
- , provided that .
- , provided that .
- and , i.e., .
- and , i.e., .
- (I)
- A priori error estimate:
- (II)
- A posteriori error estimate:
- (III)
- The rate of convergence:
- is a unique coupled fixed point.
- If , then .
3. Results
Positive Definite Solution of System of Matrix Equations
- (i)
- .
- (ii)
- and .
- (iii)
- Where .
- (I)
- A priori error estimate:
- (II)
- A posteriori error estimate:
- (III)
- The convergence rate:
- (i)
- .
- (ii)
- .
- (iii)
- Where .
- (I)
- A priori error estimate:
- (II)
- A posteriori error estimate:
- (III)
- The convergence rate:
- (i)
- and .
- (ii)
- and .
- (iii)
- Where .
- (I)
- A priori error estimate:
- (II)
- A posteriori error estimate:
- (III)
- The convergence rate:
- (i)
- .
- (ii)
- Where .
- (1)
- The system (18) has a solution .
- (2)
- The sequences defined by
- (I)
- A priori error estimate:
- (II)
- A posteriori error estimate:
- (III)
- The rate of convergence:
4. Illustrative Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, W.N.; Morley, T.D.; Trapp, G.E. Positive Solutions to X = A − BX−1B*. Linear Algebra Appl. 1990, 134, 53–62. [Google Scholar] [CrossRef]
- Engwerda, J.C. On the Existence of a Positive Definite Solution of the Matrix Equation X + ATX−1A = I. Linear Algebra Appl. 1993, 194, 91–108. [Google Scholar] [CrossRef]
- Zhan, X. Computing the Extremal Positive Definite Solution of a Matrix Equation. SIAM J. Sci. Comput. 1996, 247, 337–345. [Google Scholar] [CrossRef]
- Guo, C.; Lancaster, P. Iterative Solution of Two Matrix Equations. Math. Comput. 1999, 68, 1589–1603. [Google Scholar] [CrossRef]
- Ferrante, A.; Levy, B.C. Hermitian Solution of the Equation X = Q + NX−1N*. Linear Algebra Appl. 1996, 247, 359–373. [Google Scholar] [CrossRef]
- Hasanov, V.; El-Sayed, S.M. On the Positive Definite Solutions of Nonlinear Matrix Equation X + A*X−δA = Q. Linear Algebra Appl. 2006, 412, 154–160. [Google Scholar] [CrossRef]
- Hasanov, V. Positive Definite Solutions of the Matrix Equations X ± A*X−qA = Q. Linear Algebra Appl. 2005, 404, 166–182. [Google Scholar] [CrossRef]
- Berzig, M.; Duan, X.; Samet, B. Positive Definite Solution of the Matrix Equation X = Q − A*X−1A + B*X−1B via Bhaskar-Lakshmikantham Fixed Point Theorem. Math. Sci. 2012, 6, 27. [Google Scholar] [CrossRef]
- Bhaskar, T.G.; Lakshmikantham, V. Fixed Point Theorems in Partially Ordered Metric Spaces and Applications. Nonlinear Anal. Theory Methods Appl. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
- Ran, A.; Reurings, M. A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Ali, A.; Dinkova, C.; Ilchev, A.; Zlatanov, B. Bhaskar-Lakshmikantham Fixed Point Theorem vs Ran-Reunrings One and Some Possible Generalizations and Applications in Matrix Equations. AIMS Math. 2024, 9, 21890–21917. [Google Scholar] [CrossRef]
- Hasanov, V.; Hakkaev, S. Newton’s Method for a Nonlinear Matrix Equation. C. R. Acad. Bulgare Sci. 2015, 68, 973–982. [Google Scholar]
- Nikolova, K.; Hasanov, V. On Inexact Newton Methods for Solving Two Nonlinear Matrix Equations. Ann. Acad. Rom. Sci. Ser. Math. Its Appl. 2024, 16, 311–327. [Google Scholar] [CrossRef]
- Hasanov, V. Positive Definite Solutions of a Linearly Perturbed Matrix Equation. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2021, 13, 5–19. [Google Scholar] [CrossRef]
- Din, F.U.; Alshaikey, S.; Ishtiaq, U.; Din, M.; Sessa, S. Single and Multi-Valued Ordered-Theoretic Perov Fixed-Point Results for θ-Contraction with Application to Nonlinear System of Matrix Equations. Mathematics 2024, 12, 1302. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, X.; Tang, X.B. A generalization of the Hermitian and skew-Hermitian splitting iteration method for solving Sylvester equations. Appl. Math. Comput. 2015, 271, 609–617. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, X.; Zhou, P. A modified HSS iteration method for solving the complex linear matrix equation AXB = C. J. Comput. Math. 2016, 34, 437–450. [Google Scholar] [CrossRef]
- Banach, B. Sur les opérations dan les ensembles abstraits et leurs applications aux integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Turinici, M. Abstract Comparison Principles and Multivariable Gronwall-Bellman Inequalities. J. Math. Anal. Appl. 1986, 117, 100–127. [Google Scholar] [CrossRef]
- Dehaish, B.A.B.; Alharbi, R.K. Common Fixed Points Approximation of Two Generalized Alpha Nonexpansive Mappings in Partially Ordered Uniformly Convex Banach Space. Math. Sci. 2023, 17, 379–385. [Google Scholar] [CrossRef]
- Çevik, C.; Özeken, Ç.C. Coupled Fixed Point Results for New Classes of Functions on Ordered Vector Metric Space. Acta Math. Hungar. 2024, 172, 1–18. [Google Scholar] [CrossRef]
- Majid, N.A.; Jumaili, A.A.; Ng, Z.C.; Lee, S.K. Some Applications of Fixed Point Results for Monotone Multivalued and Integral Type Contractive Mappings. Fixed Point Theory Algorithms Sci. Eng. 2023, 2023, 11. [Google Scholar] [CrossRef]
- Nikam, V.; Shukla, A.K.; Gopal, D. Existence of a System of Fractional Order Differential Equations via Generalized Contraction Mapping in Partially Ordered Banach Space. Int. J. Dyn. Cont. 2024, 12, 125–135. [Google Scholar] [CrossRef]
- Paramasivam, E.; Sampath, S. Tripled Fixed Point Theorems in Partially Ordered ϵ-Chainable Metric Spaces for Uniformly Locally Contractive Mappings. AIP Conf. Proc. 2023, 2852, 020010. [Google Scholar] [CrossRef]
- Guo, D.; Lakshmikantham, V. Coupled Fixed Points of Nonlinear Operators with Applications. Nonlinear Anal. Theory Methods Appl. 1987, 11, 623–632. [Google Scholar] [CrossRef]
- Zlatanov, B. Coupled Best Proximity Points for Cyclic Contractive Maps and Their Applications. Fixed Point Theory 2021, 22, 431–452. [Google Scholar] [CrossRef]
- Erfanifar, R.; Hajarian, M. Efficient Iterative Schemes Based on Newton’s Method and Fixed-Point Iteration for Solving Nonlinear Matrix Equation Xp = Q ± A(X−1 + B)−1AT. Eng. Comput. 2023, 40, 2862–2890. [Google Scholar] [CrossRef]
- Sayevand, K.; Erfanifar, H.; Esmaili, H. The Maximal Positive Definite Solution of the Nonlinear Matrix Equation X + A*X−1A + B*X−1B = I. Math. Sci. 2023, 17, 337–350. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, X.; Tang, X.B. Preconditioned positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equations AX + XB = C. East Asian J. Appl. Math. 2017, 7, 55–69. [Google Scholar] [CrossRef]
- Chen, H.; Kim, H.M.; Meng, J. Algorithms for Square Root of Semi-Infinite Quasi-Toeplitz M-Matrices. J. Sci. Comput. 2024, 99, 66. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Wan, Y.; Lin, L. An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem. Appl. Math. Comput. 2024, 475, 128708. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis. Graduate Texts in Mathematics; Springer: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Kabaivanov, S.; Zlatanov, B. A variational principle, coupled fixed points and market equilibrium. Nonlinear Anal. Model. Control 2021, 26, 169–185. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications, I—Fixed-Point Theorems; Springer: New York, NY, USA, 1986. [Google Scholar]
- Petruşel, A. Fixed Points vs. Coupled Fixed Points. J. Fixed Point Theory Appl. 2018, 20, 150. [Google Scholar] [CrossRef]
- Petruşel, A.; Petruşel, G.; Xiao, Y.-B.; Yao, J.-C. Fixed Point Theorems for Generalized Contractions with Applications to Coupled Fixed Point Theory. J. Nonlinear Convex Anal. 2018, 19, 71–81. [Google Scholar]
- Hasanov, V. On the Matrix Equation X + A*X−1A − B*X−1B = I. Linear Multilinear Algebra 2018, 66, 1783–1798. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Dinkova, C.; Ilchev, A.; Kulina, H.; Zlatanov, B. Positive Definite Solution of System of Matrix Equations with X−k and Y−l via Coupled Fixed Point Theorem in Partially Ordered Spaces. Axioms 2025, 14, 123. https://doi.org/10.3390/axioms14020123
Ali A, Dinkova C, Ilchev A, Kulina H, Zlatanov B. Positive Definite Solution of System of Matrix Equations with X−k and Y−l via Coupled Fixed Point Theorem in Partially Ordered Spaces. Axioms. 2025; 14(2):123. https://doi.org/10.3390/axioms14020123
Chicago/Turabian StyleAli, Aynur, Cvetelina Dinkova, Atanas Ilchev, Hristina Kulina, and Boyan Zlatanov. 2025. "Positive Definite Solution of System of Matrix Equations with X−k and Y−l via Coupled Fixed Point Theorem in Partially Ordered Spaces" Axioms 14, no. 2: 123. https://doi.org/10.3390/axioms14020123
APA StyleAli, A., Dinkova, C., Ilchev, A., Kulina, H., & Zlatanov, B. (2025). Positive Definite Solution of System of Matrix Equations with X−k and Y−l via Coupled Fixed Point Theorem in Partially Ordered Spaces. Axioms, 14(2), 123. https://doi.org/10.3390/axioms14020123