On Ulam Stability of the Davison Functional Equation in m-Banach Spaces
Abstract
:1. Introduction
2. Basic Information on m-Normed Spaces
- (A)
- if and only if the vectors are linearly dependent;
- (B)
- the value of does not depend on a permutation of ;
- (C)
- ;
- (D)
- .
- (i)
- If is a convergent sequence in , then
- (ii)
- If and , then
- (iii)
- If and
3. Auxiliary Results
4. Stability Results for the Davison Functional Equation
5. Some Applications and Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Abdollahpour, M.R.; Rassias, M.T. Hyers-Ulam stability of hypergeometric differential equations. Aequationes Math. 2019, 93, 691–698. [Google Scholar] [CrossRef]
- Abdollahpour, M.R.; Aghayaria, R.; Rassias, M.T. Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions. J. Math. Anal. Appl. 2016, 437, 605–612. [Google Scholar] [CrossRef]
- Elqorachi, E.; Rassias, M.T. Generalized Hyers-Ulam Stability of Trigonometric Functional Equations. Mathematics 2018, 6, 83. [Google Scholar] [CrossRef]
- Jung, S.-M.; Mortici, C.; Rassias, M.T. On a functional equation of trigonometric type. Appl. Math. Comp. 2015, 252, 294–303. [Google Scholar] [CrossRef]
- Jung, S.-M.; Lee, K.-S.; Rassias, M.T.; Yang, S.-M. Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II. Mathematics 2020, 8, 1299. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Jung, S.-M.; Rassias, M.T. Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation. J. Math. Inequalities 2018, 12, 43–61. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Jung, S.-M.; Rassias, M.T. On an n-dimensional mixed type additive and quadratic functional equation. Appl. Math. Comput. 2014, 228, 13–16. [Google Scholar] [CrossRef]
- Mortici, C.; Jung, S.-M.; Rassias, M.T. On the stability of a functional equation associated with the Fibonacci numbers. Abstr. Appl. Anal. 2014, 2014, 546046. [Google Scholar] [CrossRef]
- Hayes, W.; Jackson, K.R. A survey of shadowing methods for numerical solutions of ordinary differential equations. Appl. Numer. Math. 2005, 53, 299–321. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhauser: Basel, Switzerland, 1998. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators. Mathematical Analysis and Its Applications v. 1; Academic Press: Oxford, UK, 2018. [Google Scholar]
- Tripathy, A.K. Hyers-Ulam Stability of Ordinary Differential Equations; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Badora, R.; Brzdęk, J.; Ciepliński, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Gähler, S. Untersuchungen über verallgemeinerte m-metrische Räume. I. Math. Nachr. 1969, 40, 165–189. [Google Scholar] [CrossRef]
- Gähler, S. 2-metrisch Räume und ihre topologische Struktur. Math. Nachr. 1963, 26, 115–148. [Google Scholar] [CrossRef]
- Gähler, S. Lineare 2-normierte Räumen. Math. Nachr. 1964, 28, 1–43. [Google Scholar] [CrossRef]
- Misiak, A. n-inner product spaces. Math. Nachr. 1989, 140, 299–319. [Google Scholar] [CrossRef]
- Davison, T.M.K. 191. Problem. Aequationes Math. 1980, 20, 306. [Google Scholar]
- Benz, W. 191R1. Remark. Aequationes Math. 1980, 20, 307. [Google Scholar]
- Girgensohn, R.; Lajkó, K. A functional equation of Davison and its generalization. Aequationes Math. 2000, 60, 219–224. [Google Scholar] [CrossRef]
- Davison, T.M.K. A Hosszú-like functional equation. Publ. Math. Debr. 2001, 58, 505–513. [Google Scholar] [CrossRef]
- Jung, S.-M.; Sahoo, P.K. Hyers-Ulam-Rassias stability of an equation of Davison. J. Math. Anal. Appl. 1999, 238, 297–304. [Google Scholar] [CrossRef]
- Jung, S.-M.; Sahoo, P.K. On the Hyers-Ulam stability of a functional equation of Davison. Kyungpook Math. J. 2000, 40, 87–92. [Google Scholar]
- Jun, K.-W.; Jung, S.-M.; Lee, Y.-H. A generalization of the Hyers-Ulam-Rassias stability of a functional equation of Davison. J. Korean Math. Soc. 2004, 41, 501–511. [Google Scholar] [CrossRef]
- Jung, S.-M.; Sahoo, P.K. Hyers-Ulam-Rassias stability of a functional equation of Davison in rings. Nonlinear Funct. Anal. Appl. 2006, 11, 891–896. [Google Scholar]
- Kim, Y.-H. On the Hyers-Ulam-Rassias stability of an equation of Davison. Indian J. Pure Appl. Math. 2002, 33, 713–726. [Google Scholar]
- Park, C.; Tareeghee, M.A.; Najati, A.; Noori, B. Hyers-Ulam stability of Davison functional equation on restricted domains. Demonstr. Math. 2024, 57, 20240039. [Google Scholar] [CrossRef]
- Schwaiger, J. On the existence of m-norms in vector spaces over valued fields. Aequat. Math. 2023, 97, 1051–1058. [Google Scholar] [CrossRef]
- EL-Fassi, I.-I. New stability results for the radical sextic functional equation related to quadratic mappings in (2, β)-Banach spaces. J. Fixed Point Theory Appl. 2018, 20, 138. [Google Scholar] [CrossRef]
- El-hady, E.-S. On stability of the functional equation of p-Wright affine functions in (2, α)-Banach spaces. J. Egypt. Math. Soc. 2019, 27, 21. [Google Scholar] [CrossRef]
- El-hady, E.-S.; Brzdęk, J. On Ulam stability of functional equations in 2-normed spaces—A survey II. Symmetry 2022, 14, 1365. [Google Scholar] [CrossRef]
- Chu, H.-Y.; Kim, A.; Park, J. On the Hyers-Ulam stabilities of functional equations on n-Banach spaces. Math. Nachr. 2016, 289, 1177–1188. [Google Scholar] [CrossRef]
- Xu, T.Z. Approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in n-Banach spaces. Abstr. Appl. Anal. 2013, 2013, 648709. [Google Scholar] [CrossRef]
- Xu, T.Z.; Rassias, J.M. On the Hyers-Ulam stability of a general mixed additive and cubic functional equation in n-Banach spaces. Abstr. Appl. Anal. 2012, 2012, 926390. [Google Scholar] [CrossRef]
- Brzdęk, J.; El-hady, E.-S. On hyperstability of the Cauchy functional equation in n-Banach spaces. Mathematics 2020, 8, 1886. [Google Scholar] [CrossRef]
- Brzdęk, J.; Ciepliński, K. A fixed point theorem in n-Banach spaces and Ulam stability. J. Math. Anal. Appl. 2019, 470, 632–646. [Google Scholar] [CrossRef]
- Aczél, J. Lectures on Functional Equations and Their Applications; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables. Volume 31 of Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, 2nd ed.; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Kannappan, P. Functional Equations and Inequalities with Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Freese, R.W.; Cho, Y.J. Geometry of Linear 2-Normed Spaces; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2001. [Google Scholar]
- Gunawan, H.; Mashadi, M. On n-normed spaces. Int. J. Math. Math. Sci. 2001, 27, 631–639. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Xu, B. Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlin. Anal. TMA 2011, 74, 324–330. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-hady, E.-s.; Brzdęk, J. On Ulam Stability of the Davison Functional Equation in m-Banach Spaces. Axioms 2025, 14, 107. https://doi.org/10.3390/axioms14020107
El-hady E-s, Brzdęk J. On Ulam Stability of the Davison Functional Equation in m-Banach Spaces. Axioms. 2025; 14(2):107. https://doi.org/10.3390/axioms14020107
Chicago/Turabian StyleEl-hady, El-sayed, and Janusz Brzdęk. 2025. "On Ulam Stability of the Davison Functional Equation in m-Banach Spaces" Axioms 14, no. 2: 107. https://doi.org/10.3390/axioms14020107
APA StyleEl-hady, E.-s., & Brzdęk, J. (2025). On Ulam Stability of the Davison Functional Equation in m-Banach Spaces. Axioms, 14(2), 107. https://doi.org/10.3390/axioms14020107