Bilinear Optimal Control for a Nonlinear Parabolic Equation Involving Nonlocal-in-Time Term
Abstract
:1. Introduction
2. General Framework and Preliminary Results
3. Analysis of the State Equation
3.1. Maximum Principle
3.2. Existence and Uniqueness Results
4. Resolution of an Optimal Control Problem
4.1. Sensitivity Analysis
4.2. Optimization Problem
- 1.
- The set of feasible directions is the set defined by
- 2.
- The critical cone is the set defined by
- 1.
- The functional is of class . Furthermore, if we denote by and by the spaces of linear continuous functional on and bilinear continuous functional on then for every , the following continuous extensions exist:
- 2.
- For any sequence such that
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chipot, M. On a nonlocal-in-time parabolic problem. Adv. Math. Sci. Appl. 2022, 31, 1–10. [Google Scholar]
- Starovoitov, V.N. Boundary value problem for a global-in-time parabolic equation. Math. Methods Appl. Sci. 2021, 44, 1118–1126. [Google Scholar] [CrossRef]
- Starovoitov, V.N. Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral. J. Elliptic Parabol. Equ. 2021, 7, 623–634. [Google Scholar] [CrossRef]
- Casas, E.; Mateos, M. Critical cones for sufficient second order conditions in PDE constrained optimization. SIAM J. Optim. 2020, 30, 585–603. [Google Scholar] [CrossRef]
- Ebenbeck, M.; Knopf, P. Optimal medication for tumors modeled by a Cahn–Hilliard–Brinkman equation. Calc. Var. Partial. Differ. Equ. 2019, 58, 1–31. [Google Scholar] [CrossRef]
- Frankowska, H.; Marchini, E.; Mazzola, M. Second-order sufficient conditions in optimal control of evolution systems. J. Evol. Equ. 2024, 24, 40. [Google Scholar] [CrossRef]
- Frankowska, H.; Marchini, E.; Mazzola, M. Necessary optimality conditions for infinite dimensional state constrained control problems. J. Differ. Equ. 2018, 264, 7294–7327. [Google Scholar] [CrossRef]
- Garcke, H.; Lam, K.F.; Rocca, E. Optimal control of treatment time in a diffuse interface model of tumor growth. Appl. Math. Optim. 2018, 78, 495–544. [Google Scholar] [CrossRef]
- Kenne, C.; Djomegne, L.; Mophou, G. Optimal control of a parabolic equation with a nonlocal nonlinearity. J. Differ. Equ. 2024, 378, 234–263. [Google Scholar] [CrossRef]
- Matei, A.; Micu, S. Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal. Theory Methods Appl. 2011, 74, 1641–1652. [Google Scholar] [CrossRef]
- Tang, H.; Yuan, Y. Optimal control for a chemotaxis–haptotaxis model in two space dimensions. Bound. Value Probl. 2022, 2022, 79. [Google Scholar] [CrossRef]
- Lions, J.L. Optimal Control of Systems Governed by Partial Differential Equations; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971. [Google Scholar]
- Lions, J.L.; Magenes, E.; Magenes, E. Problèmes aux Limites non Homogènes et Applications; Dunod Paris: Paris, France, 1968; Volume 1. [Google Scholar]
- Lions, J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires. Dunod 1969, 1. [Google Scholar]
- Nirenberg, L. On elliptic partial differential equations. In Il Principio di Minimo e sue Applicazioni alle Equazioni Funzionali; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–48. [Google Scholar]
- Breitenbach, T.; Borzì, A. A sequential quadratic Hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals. J. Dyn. Control. Syst. 2019, 25, 403–435. [Google Scholar] [CrossRef]
- Wu, Z.; Yin, J.; Wang, C. Elliptic & Parabolic Equations; World Scientific: Singapore, 2006. [Google Scholar]
- Aronna, M.S.; Tröltzsch, F. First and second order optimality conditions for the control of Fokker–Planck equations. ESAIM Control. Optim. Calc. Var. 2021, 27, 15. [Google Scholar] [CrossRef]
- Casas, E.; Tröltzsch, F. Second order analysis for optimal control problems: Improving results expected from abstract theory. SIAM J. Optim. 2012, 22, 261–279. [Google Scholar] [CrossRef]
- Tröltzsch, F. Optimal Control of Partial Differential Equations: Theory, Methods, and Applications; American Mathematical Soc.: Providence, RI, USA, 2010; Volume 112. [Google Scholar]
- Kenne, C.; Djomegne, L.; Zongo, P. Second-order optimality conditions for the bilinear optimal control of a degenerate parabolic equation. arXiv 2022, arXiv:2212.11046. [Google Scholar]
- Kenne, C.; Mophou, G.; Warma, M. Bilinear optimal control for a fractional diffusive equation. arXiv 2022, arXiv:2210.17494. [Google Scholar]
- Lions, J.L. Equations Différentielles Opérationnelles: Et Problèmes aux Limites; Springer: Berlin/Heidelberg, Germany, 2013; Volume 111. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mophou, G.; Fournier, A.; Jean-Alexis, C. Bilinear Optimal Control for a Nonlinear Parabolic Equation Involving Nonlocal-in-Time Term. Axioms 2025, 14, 38. https://doi.org/10.3390/axioms14010038
Mophou G, Fournier A, Jean-Alexis C. Bilinear Optimal Control for a Nonlinear Parabolic Equation Involving Nonlocal-in-Time Term. Axioms. 2025; 14(1):38. https://doi.org/10.3390/axioms14010038
Chicago/Turabian StyleMophou, Gisèle, Arnaud Fournier, and Célia Jean-Alexis. 2025. "Bilinear Optimal Control for a Nonlinear Parabolic Equation Involving Nonlocal-in-Time Term" Axioms 14, no. 1: 38. https://doi.org/10.3390/axioms14010038
APA StyleMophou, G., Fournier, A., & Jean-Alexis, C. (2025). Bilinear Optimal Control for a Nonlinear Parabolic Equation Involving Nonlocal-in-Time Term. Axioms, 14(1), 38. https://doi.org/10.3390/axioms14010038