On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function
Abstract
:1. Introduction
2. Case of
3. General Case
4. Limit Lemmas
5. Integral Representation
6. Difference Between and
7. Proof of Theorem 1
8. Approximation by Shifts
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motohashi, Y. A relation between the Riemann zeta-function and the hyperbolic Laplacian. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV Ser. 1995, 22, 299–313. [Google Scholar]
- Ivič, A. On some conjectures and results for the Riemann zeta-function and Hecke series. Acta Arith. 2001, 99, 115–145. [Google Scholar] [CrossRef]
- Ivič, A.; Motohashi, Y. The mean square of the error term for the fourth moment of the zeta-function. Proc. Lond. Math. Soc. 1994, 69, 309–329. [Google Scholar] [CrossRef]
- Ivič, A.; Motohashi, Y. On the fourth moment of the Riemann zeta-function. J. Number Theory 1995, 51, 16–45. [Google Scholar] [CrossRef]
- Ivič, A. The Mellin transform and the Riemann zeta-function. In Proceedings of the Conference on Elementary and Analytic Number Theory, Vienna, Austria, 18–20 July 1996; Nowak, W.G., Schoißengeier, J., Eds.; Universität Wien & Universität für Bodenkultur: Vienna, Austria, 1996; pp. 112–127. [Google Scholar]
- Motohashi, Y. Spectral Theory of the Riemann Zeta-Function; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Ivič, A. On the error term for the fourth moment of the Riemann zeta-function. J. Lond. Math. Soc. 1999, 60, 21–32. [Google Scholar] [CrossRef]
- Ivič, A.; Jutila, M.; Motohashi, Y. The Mellin transform of powers of the zeta-function. Acta Arith. 2000, 95, 305–342. [Google Scholar] [CrossRef]
- Jutila, M. The Mellin transform of the square of Riemann’s zeta-function. Period. Math. Hung. 2001, 42, 179–190. [Google Scholar] [CrossRef]
- Lukkarinen, M. The Mellin Transform of the Square of Riemann’s Zeta-Function and Atkinson Formula. Ph.D. Thesis, University of Turku, Turku, Finland, 2004. [Google Scholar]
- Ivič, A. On the estimation of some Mellin transforms connected with the fourth moment of |ζ(1/2 + it)|. In Elementare und Analytische Zahlentheorie (Tagungsband), Proceedings of the ELAZ-Conference, Frankfurt am Main, Germany, 24–28 May 2004; Schwarz, W., Steuding, J., Eds.; Franz Steiner Verlag: Stuttgart, Germany, 2006; pp. 77–88. [Google Scholar]
- Laurinčikas, A. One transformation formula related to the Riemann zeta-function. Integral Transform. Spec. Funct. 2008, 19, 577–583. [Google Scholar] [CrossRef]
- Laurinčikas, A. A growth estimate for the Mellin transform of the Riemann zeta function. Math. Notes 2011, 89, 82–92. [Google Scholar] [CrossRef]
- Laurinčikas, A. The Mellin transform of the square of the Riemann zeta-function in the critical strip. Integral Transform. Spec. Funct. 2011, 22, 467–476. [Google Scholar] [CrossRef]
- Laurinčikas, A. Mean square of the Mellin transform of the Riemann zeta-function. Integral Transform. Spec. Funct. 2011, 22, 617–629. [Google Scholar] [CrossRef]
- Bohr, H. Über das Verhalten von ζ(s) in der Halbebene σ > 1. Nachr. Akad. Wiss. Göttingen II Math. Phys. Kl. 1911, 1911, 409–428. [Google Scholar]
- Bohr, H.; Jessen, B. Über die Wertwerteiling der Riemmanshen Zetafunktion, erste Mitteilung. Acta Math. 1930, 54, 1–35. [Google Scholar] [CrossRef]
- Bohr, H.; Jessen, B. Über die Wertwerteiling der Riemmanshen Zetafunktion, zweite Mitteilung. Acta Math. 1932, 58, 1–55. [Google Scholar] [CrossRef]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Voronin, S.M. The functional independence of Dirichlet L-functions. Acta Arith. 1975, 27, 493–503. (In Russian) [Google Scholar]
- Garbaliauskienė, V.; Macaitienė, R.; Šiaučiūnas, D. On the functional independence of the Riemann zeta-function. Math. Modell. Anal. 2023, 28, 352–359. [Google Scholar] [CrossRef]
- Korolev, M.; Laurinčikas, A. Joint functional independence of the Riemann zeta-function. Indian J. Pure Appl. Math. 2024, 1–6. [Google Scholar] [CrossRef]
- Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 1951, 82, 664–779. [Google Scholar] [CrossRef]
- Gutzwiller, M.C. Stochastic behavior in quantum scattering. Physica 1983, 7, 341–355. [Google Scholar] [CrossRef]
- Balinskaitė, V.; Laurinčikas, A. Discrete limit theorems for the Mellin transform of the Riemann zeta-function. Acta Arith. 2008, 131, 29–42. [Google Scholar] [CrossRef]
- Balinskaitė, V.; Laurinčikas, A. A two-dimentional discrete limit theorem in the space of analytic functions for Mellin transforms of the Riemann zeta-function. Nonlinear Anal. Model. Control 2008, 13, 159–167. [Google Scholar] [CrossRef]
- Laurinčikas, A. A two-dimensional limit theorem for Mellin transforms of the Riemann zeta-function. Lith. Math. J. 2009, 49, 62–70. [Google Scholar] [CrossRef]
- Laurinčikas, A. Limit theorems for the Mellin transform of the fourth power of the Riemann zeta-function. Siber. Math. J. 2010, 51, 88–103. [Google Scholar] [CrossRef]
- Laurinčikas, A. Corrigendum to the paper “Limit theorems for the Mellin transform of the square of the Riemann zeta-function. I” (Acta Arith. 122 (2006), 173–184). Acta Arith. 2010, 143, 191–195. [Google Scholar] [CrossRef]
- Korolev, M.; Laurinčikas, A. On the approximation by Mellin transform of the Riemann zeta-function. Axioms 2023, 12, 520. [Google Scholar] [CrossRef]
- Laurinčikas, A. On approximation by an absolutely convergent integral related to the Mellin transform. Axioms 2023, 12, 789. [Google Scholar] [CrossRef]
- Garbaliauskienė, V.; Laurinčikas, A.; Šiaučiūnas, D. On the discrete approximation by the Mellin transform of the Riemann zeta-function. Mathematics 2023, 11, 2315. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D. Generalized limit theorem for Mellin transform of the Riemann zeta-function. Axioms 2024, 13, 251. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D. On generalized shifts of the Mellin transform of the Riemann zeta-function. Open Math. 2024, 22, 20240055. [Google Scholar] [CrossRef]
- The Millennium Prize Problems. Available online: https://www.claymath.org/millennium-problems/ (accessed on 20 December 2024).
- Billingsley, P. Convergence of Probability Measures; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
- Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1877. [Google Scholar]
- Kowalski, E. An Introduction to Probabilistic Number Theory; Cambridge Studies in Advanced Mathematics (192); Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Pańkowski, Ł. Joint universality for dependent L-functions. Ramanujan J. 2018, 45, 181–195. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R.; Šiaučiūnas, D. A generalization of the Voronin theorem. Lith. Math. J. 2019, 59, 156–168. [Google Scholar] [CrossRef]
- Korolev, M.; Laurinčikas, A. A new application of the Gram points. Aequationes Math. 2019, 93, 859–873. [Google Scholar] [CrossRef]
- Dubickas, A.; Garunkštis, R.; Laurinčikas, A. Approximation by shifts of compositions of Dirichlet L-functions with the Gram function. Mathematics 2020, 8, 751. [Google Scholar] [CrossRef]
- Korolev, M.; Laurinčikas, A. A new application of the Gram points. II. Aequationes Math. 2020, 94, 1171–1187. [Google Scholar] [CrossRef]
- Laurinčikas, A. Approximation by generalized shifts of the Riemann zeta-function in short intervals. Ramanujan J. 2021, 56, 309–322. [Google Scholar] [CrossRef]
- Korolev, M.; Laurinčikas, A. Gram points in the theory of zeta-functions of certain cusp forms. J. Math. Anal. Appl. 2021, 504, 125396. [Google Scholar] [CrossRef]
- Laurinčikas, A. On universality of the Riemann and Hurwitz zeta-functions. Results Math. 2022, 77, 29. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Vadeikis, G. Joint weighted universality of the Hurwitz zeta-functions. St. Petersburg Math. J. 2022, 33, 511–522. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R.; Šiaučiūnas, D. Universality of an absolutely convergent Dirichlet series with modified shifts. Turk. J. Math. 2022, 46, 2440–2449. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint universality in short intervals with generalized shifts for the Riemann zeta-function. Mathematics 2022, 10, 1652. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D. Joint approximation by non-linear shifts of Dirichlet L-functions. J. Math. Anal. Appl. 2022, 516, 126524. [Google Scholar] [CrossRef]
- Korolev, M.; Laurinčikas, A. Joint approximation of analytic functions by shifts of the Riemann zeta-function twisted by the Gram function. Carpathian J. Math. 2023, 39, 175–187. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint discrete approximation of analytic functions by shifts of the Riemann zeta-function twisted by Gram points. Mathematics 2023, 11, 565. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R. A generalized discrete Bohr-Jessen-type theorem for the Epstein zeta-function. Mathematics 2023, 11, 799. [Google Scholar] [CrossRef]
- Chakraborty, K.; Kanemitsu, S.; Laurinčikas, A. On joint discrete universality of the Riemann zeta-function in short intervals. Math. Modell. Anal. 2023, 28, 596–610. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint discrete approximation of analytic functions by shifts of the Riemann zeta-function twisted by Gram points II. Axioms 2023, 12, 426. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R. Generalized universality for compositions of the Riemann zeta-function in short intervals. Mathematics 2023, 11, 2436. [Google Scholar] [CrossRef]
- Laurinčikas, A. On the extension of the Voronin universality theorem for the Riemann zeta-function. Quaest. Math. 2024, 47, 735–750. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbaliauskienė, V.; Rimkevičienė, A.; Stoncelis, M.; Šiaučiūnas, D. On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function. Axioms 2025, 14, 34. https://doi.org/10.3390/axioms14010034
Garbaliauskienė V, Rimkevičienė A, Stoncelis M, Šiaučiūnas D. On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function. Axioms. 2025; 14(1):34. https://doi.org/10.3390/axioms14010034
Chicago/Turabian StyleGarbaliauskienė, Virginija, Audronė Rimkevičienė, Mindaugas Stoncelis, and Darius Šiaučiūnas. 2025. "On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function" Axioms 14, no. 1: 34. https://doi.org/10.3390/axioms14010034
APA StyleGarbaliauskienė, V., Rimkevičienė, A., Stoncelis, M., & Šiaučiūnas, D. (2025). On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function. Axioms, 14(1), 34. https://doi.org/10.3390/axioms14010034