Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions
Abstract
1. Introduction
2. Properties of Generalized Bronze Fibonacci Sequences
3. Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aydınyüz, S.; Aşcı, M. The moore-penrose inverse of the rectangular fibonacci matrix and applications to the cryptology. Adv. Appl. Discret. Math. 2023, 40, 195–211. [Google Scholar] [CrossRef]
- Yonekura, T.; Sugiyama, M. Symmetry and its transition in phyllotaxis. J. Plant Res. 2021, 134, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Swinton, J.; Ochu, E. Novel fibonacci and non-fibonacci structure in the sunflower: Results of a citizen science experiment. R. Soc. Open Sci. 2016, 3, 160091. [Google Scholar] [CrossRef]
- Alakuş, T.B.; Türkoğlu, İ. A novel Fibonacci hash method for protein family identification by using recurrent neural networks. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 370–386. [Google Scholar] [CrossRef]
- Falcon, S.; Plaza, A. On the Fibonacci k-numbers. Chaos Solitons Fractals 2007, 32, 1615–1624. [Google Scholar] [CrossRef]
- Akkuş, H.; Üregen, R.N.; Özkan, E. A new approach to k−jacobsthal lucas sequences. Sak. Univ. J. Sci. 2021, 25, 969–973. [Google Scholar] [CrossRef]
- Özkan, E.; Akkus, H. On k-Chebsyhev Sequence. Wseas Trans. Math. 2023, 22, 503–507. [Google Scholar] [CrossRef]
- Godase, A.D.; Dhakne, M.B. On the properties of k-Fibonacci and k-Lucas numbers. Int. J. Adv. Appl. Math. Mech. 2014, 2, 100–106. [Google Scholar]
- Khan, I. More generalized (ε)-Fibonacci sequence, series, and its applications. AIP Adv. 2024, 14, 015233. [Google Scholar] [CrossRef]
- Akkuş, H.; Deveci, Ö.; Özkan, E.; Shannon, A.G. Discatenated and lacunary recurrences. Notes Number Theory Discret. Math. 2024, 30, 8–19. [Google Scholar] [CrossRef]
- Bravo, J.J.; Herrera, J.L.; Luca, F. On a generalization of the Pell sequence. Math. Bohem. 2021, 146, 199–213. [Google Scholar] [CrossRef]
- Hong, J.; Lee, J.; Park, H. Generalizing some Fibonacci–Lucas relations. Commun. Korean Math. Soc. 2023, 38, 89–96. [Google Scholar] [CrossRef]
- Akbiyik, M.; Alo, J. On third-order Bronze Fibonacci numbers. Mathematics 2021, 9, 2606. [Google Scholar] [CrossRef]
- Alo, J. On Third Order Bronze Fibonacci Quaternions. Turk. J. Math. Comput. Sci. 2022, 14, 331–339. [Google Scholar] [CrossRef]
- Karaaslan, N. Gaussian Bronze Lucas numbers Gauss Bronz Lucas sayıları. Bilecik Şeyh Edebali Üniversitesi Fen Bilim. Derg. 2022, 9, 357–363. [Google Scholar] [CrossRef]
- Özkan, E.; Akkuş, H. Copper ratio obtained by generalizing the Fibonacci sequence. AIP Adv. 2024, 14, 1–11. [Google Scholar] [CrossRef]
- Akhtamova, S.S.; Alekseev, V.S.; Lyapin, A.P. Discrete Generating Functions. Math. Notes 2023, 114, 1087–1093. [Google Scholar] [CrossRef]
- Sveier, A.; Sjøberg, A.M.; Egeland, O. Applied Runge–Kutta–Munthe-Kaas integration for the Quaternion Kinematics. J. Guid. Control Dyn. 2019, 42, 2747–2754. [Google Scholar] [CrossRef]
- Cariow, A.; Cariowa, G.; Majorkowska-Mech, D. An algorithm for quaternion–based 3d rotation. Int. J. Appl. Math. Comput. Sci. 2020, 30, 149–160. [Google Scholar] [CrossRef]
- Danielewski, M.; Sapa, L. Foundations of the Quaternion Quantum Mechanics. Entropy 2020, 22, 1424. [Google Scholar] [CrossRef] [PubMed]
- Ozgoren, M.K. Comparative study of attitude control methods based on Euler angles, quaternions, angle–axis pairs and orientation matrices. Trans. Inst. Meas. Control 2019, 41, 1189–1206. [Google Scholar] [CrossRef]
- Senjean, B.; Sen, S.; Repisky, M.; Knizia, G.; Visscher, L. Generalization of intrinsic orbitals to Kramers-Paired Quaternion Spinors, molecular fragments, and Valence Virtual Spinors. J. Chem. Theory Comput. 2021, 17, 1337–1354. [Google Scholar] [CrossRef] [PubMed]
- Horadam, A.F. Complex Fibonacci numbers and Fibonacci Quaternions. Am. Math. Mon. 1963, 70, 289–291. [Google Scholar] [CrossRef]
- Macfarlane, A. Hyperbolic Quaternions. Proc. R. Soc. Edinb. 1902, 23, 169–180. [Google Scholar] [CrossRef]
- Uysal, M.; Özkan, E. Higher-Order Jacobsthal–Lucas Quaternions. Axioms 2022, 11, 671. [Google Scholar] [CrossRef]
- Kizilates, C.; Kone, T. On higher order Fibonacci quaternions. J. Anal. 2021, 29, 1071–1082. [Google Scholar] [CrossRef]
- Akyigit, M.; Koksal, H.H.; Tosun, M. Fibonacci generalized quaternions. Adv. Appl. Clifford Algebras 2014, 24, 631–641. [Google Scholar] [CrossRef]
- Kizilates, C. On quaternions with incomplete Fibonacci and Lucas numbers components. Util. Math. 2019, 110, 263–269. [Google Scholar]
- Cerda-Morales, G. Identites for third order Jacobsthal quaternions. Adv. Appl. Clifford Algebras 2017, 27, 1043–1053. [Google Scholar] [CrossRef]
- Uysal, M.; Özkan, E. Padovan Hybrid Quaternions and Some Properties. J. Sci. Arts 2022, 22, 121–132. [Google Scholar] [CrossRef]
- Cerda-Morales, G. Some results on dual third-order Jacobsthal quaternions. Filomat 2019, 33, 1865–1876. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özkan, E.; Akkuş, H.; Özkan, A. Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions. Axioms 2025, 14, 14. https://doi.org/10.3390/axioms14010014
Özkan E, Akkuş H, Özkan A. Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions. Axioms. 2025; 14(1):14. https://doi.org/10.3390/axioms14010014
Chicago/Turabian StyleÖzkan, Engin, Hakan Akkuş, and Alkan Özkan. 2025. "Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions" Axioms 14, no. 1: 14. https://doi.org/10.3390/axioms14010014
APA StyleÖzkan, E., Akkuş, H., & Özkan, A. (2025). Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions. Axioms, 14(1), 14. https://doi.org/10.3390/axioms14010014