Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions
Abstract
:1. Introduction
2. Properties of Generalized Bronze Fibonacci Sequences
3. Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aydınyüz, S.; Aşcı, M. The moore-penrose inverse of the rectangular fibonacci matrix and applications to the cryptology. Adv. Appl. Discret. Math. 2023, 40, 195–211. [Google Scholar] [CrossRef]
- Yonekura, T.; Sugiyama, M. Symmetry and its transition in phyllotaxis. J. Plant Res. 2021, 134, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Swinton, J.; Ochu, E. Novel fibonacci and non-fibonacci structure in the sunflower: Results of a citizen science experiment. R. Soc. Open Sci. 2016, 3, 160091. [Google Scholar] [CrossRef]
- Alakuş, T.B.; Türkoğlu, İ. A novel Fibonacci hash method for protein family identification by using recurrent neural networks. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 370–386. [Google Scholar] [CrossRef]
- Falcon, S.; Plaza, A. On the Fibonacci k-numbers. Chaos Solitons Fractals 2007, 32, 1615–1624. [Google Scholar] [CrossRef]
- Akkuş, H.; Üregen, R.N.; Özkan, E. A new approach to k−jacobsthal lucas sequences. Sak. Univ. J. Sci. 2021, 25, 969–973. [Google Scholar] [CrossRef]
- Özkan, E.; Akkus, H. On k-Chebsyhev Sequence. Wseas Trans. Math. 2023, 22, 503–507. [Google Scholar] [CrossRef]
- Godase, A.D.; Dhakne, M.B. On the properties of k-Fibonacci and k-Lucas numbers. Int. J. Adv. Appl. Math. Mech. 2014, 2, 100–106. [Google Scholar]
- Khan, I. More generalized (ε)-Fibonacci sequence, series, and its applications. AIP Adv. 2024, 14, 015233. [Google Scholar] [CrossRef]
- Akkuş, H.; Deveci, Ö.; Özkan, E.; Shannon, A.G. Discatenated and lacunary recurrences. Notes Number Theory Discret. Math. 2024, 30, 8–19. [Google Scholar] [CrossRef]
- Bravo, J.J.; Herrera, J.L.; Luca, F. On a generalization of the Pell sequence. Math. Bohem. 2021, 146, 199–213. [Google Scholar] [CrossRef]
- Hong, J.; Lee, J.; Park, H. Generalizing some Fibonacci–Lucas relations. Commun. Korean Math. Soc. 2023, 38, 89–96. [Google Scholar] [CrossRef]
- Akbiyik, M.; Alo, J. On third-order Bronze Fibonacci numbers. Mathematics 2021, 9, 2606. [Google Scholar] [CrossRef]
- Alo, J. On Third Order Bronze Fibonacci Quaternions. Turk. J. Math. Comput. Sci. 2022, 14, 331–339. [Google Scholar] [CrossRef]
- Karaaslan, N. Gaussian Bronze Lucas numbers Gauss Bronz Lucas sayıları. Bilecik Şeyh Edebali Üniversitesi Fen Bilim. Derg. 2022, 9, 357–363. [Google Scholar] [CrossRef]
- Özkan, E.; Akkuş, H. Copper ratio obtained by generalizing the Fibonacci sequence. AIP Adv. 2024, 14, 1–11. [Google Scholar] [CrossRef]
- Akhtamova, S.S.; Alekseev, V.S.; Lyapin, A.P. Discrete Generating Functions. Math. Notes 2023, 114, 1087–1093. [Google Scholar] [CrossRef]
- Sveier, A.; Sjøberg, A.M.; Egeland, O. Applied Runge–Kutta–Munthe-Kaas integration for the Quaternion Kinematics. J. Guid. Control Dyn. 2019, 42, 2747–2754. [Google Scholar] [CrossRef]
- Cariow, A.; Cariowa, G.; Majorkowska-Mech, D. An algorithm for quaternion–based 3d rotation. Int. J. Appl. Math. Comput. Sci. 2020, 30, 149–160. [Google Scholar] [CrossRef]
- Danielewski, M.; Sapa, L. Foundations of the Quaternion Quantum Mechanics. Entropy 2020, 22, 1424. [Google Scholar] [CrossRef] [PubMed]
- Ozgoren, M.K. Comparative study of attitude control methods based on Euler angles, quaternions, angle–axis pairs and orientation matrices. Trans. Inst. Meas. Control 2019, 41, 1189–1206. [Google Scholar] [CrossRef]
- Senjean, B.; Sen, S.; Repisky, M.; Knizia, G.; Visscher, L. Generalization of intrinsic orbitals to Kramers-Paired Quaternion Spinors, molecular fragments, and Valence Virtual Spinors. J. Chem. Theory Comput. 2021, 17, 1337–1354. [Google Scholar] [CrossRef] [PubMed]
- Horadam, A.F. Complex Fibonacci numbers and Fibonacci Quaternions. Am. Math. Mon. 1963, 70, 289–291. [Google Scholar] [CrossRef]
- Macfarlane, A. Hyperbolic Quaternions. Proc. R. Soc. Edinb. 1902, 23, 169–180. [Google Scholar] [CrossRef]
- Uysal, M.; Özkan, E. Higher-Order Jacobsthal–Lucas Quaternions. Axioms 2022, 11, 671. [Google Scholar] [CrossRef]
- Kizilates, C.; Kone, T. On higher order Fibonacci quaternions. J. Anal. 2021, 29, 1071–1082. [Google Scholar] [CrossRef]
- Akyigit, M.; Koksal, H.H.; Tosun, M. Fibonacci generalized quaternions. Adv. Appl. Clifford Algebras 2014, 24, 631–641. [Google Scholar] [CrossRef]
- Kizilates, C. On quaternions with incomplete Fibonacci and Lucas numbers components. Util. Math. 2019, 110, 263–269. [Google Scholar]
- Cerda-Morales, G. Identites for third order Jacobsthal quaternions. Adv. Appl. Clifford Algebras 2017, 27, 1043–1053. [Google Scholar] [CrossRef]
- Uysal, M.; Özkan, E. Padovan Hybrid Quaternions and Some Properties. J. Sci. Arts 2022, 22, 121–132. [Google Scholar] [CrossRef]
- Cerda-Morales, G. Some results on dual third-order Jacobsthal quaternions. Filomat 2019, 33, 1865–1876. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özkan, E.; Akkuş, H.; Özkan, A. Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions. Axioms 2025, 14, 14. https://doi.org/10.3390/axioms14010014
Özkan E, Akkuş H, Özkan A. Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions. Axioms. 2025; 14(1):14. https://doi.org/10.3390/axioms14010014
Chicago/Turabian StyleÖzkan, Engin, Hakan Akkuş, and Alkan Özkan. 2025. "Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions" Axioms 14, no. 1: 14. https://doi.org/10.3390/axioms14010014
APA StyleÖzkan, E., Akkuş, H., & Özkan, A. (2025). Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions. Axioms, 14(1), 14. https://doi.org/10.3390/axioms14010014