Solutions of Cauchy Problems for the Caudrey–Dodd–Gibbon–Kotera–Sawada Equation in Three Spatial and Two Temporal Dimensions
Abstract
:1. Introduction
2. Three-Dimensional Extensions of the CDGKS Equation
3. Spectral Analysis of the -Independent Part of the Lax Pair
4. The Solution of the Cauchy Problem for Equation (48)
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Fokas, A.S. Nonlinear Fourier transforms, integrability and nonlocality in multidimensions. Nonlinearity 2007, 20, 2093–2113. [Google Scholar] [CrossRef]
- Faddeev, L.D. The inverse problem in the quantum theory of scattering. J. Math. Phys. 1963, 4, 72–104. [Google Scholar] [CrossRef]
- Fokas, A.S.; Gelfand, I.M. Integrability of linear and nonlinear evolution equations and the associated nonlinear Fourier transforms. Lett. Math. Phys. 1994, 32, 189–210. [Google Scholar] [CrossRef]
- Manakov, S.V.; Zakharov, V.E. Three-dimensional model of relativistic-invariant field theory, integrable by the inverse scattering transform. Lett. Math. Phys. 1981, 5, 247–253. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 1973, 31, 125–127. [Google Scholar] [CrossRef]
- Wadati, M. The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 1973, 34, 1289–1296. [Google Scholar] [CrossRef]
- Fokas, A.S.; Ablowitz, M.J. On the inverse scatering of the time dependent Schrödinger equation and the associated KPI equation. Stud. Appl. Math. 1983, 69, 211–228. [Google Scholar] [CrossRef]
- Constantin, A.; Gerdjikov, V.S.; Ivanov, R.I. Inverse scattering transform for the Camassa-Holm equation. Inverse Prob. 2006, 22, 2197. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. The D-bar approach to inverse scattering and nonlinear equations. Phys. D 1986, 18, 242–249. [Google Scholar] [CrossRef]
- Chai, X.D.; Zhang, Y.F.; Chen, Y.; Zhao, S.Y. The -dressing method for the (2+1)-dimensional Jimbo-Miwa equation. P Am. Math. Soc. 2022, 150, 2879–2887. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math. 1984, 37, 39–90. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. Scattering, transformations spectrales et equations d’evolution nonlineare. II. Seminaire Goulaouic-Meyer-Schwartz. Ec. Polytech. Palaiseau Exp. 1982, 21. [Google Scholar]
- Beals, R.; Coifman, R.R. Scattering, transformations spectrales et equations d’evolution nonlineare. I. Seminaire Goulaouic-Meyer-Schwartz. Ec. Polytech. Palaiseau Exp. 1981, 22. [Google Scholar]
- Fokas, A.S. Inverse scattering of first-order systems in the plane related to nonlinear multidimensional equations. Phys. Rev. Lett. 1983, 51, 3–6. [Google Scholar] [CrossRef]
- Dubrovsky, V.G. The application of the -dressing method to some integrable (2+1)-dimensional nonlinear equations. J. Phys. A 1996, 29, 3617–3630. [Google Scholar] [CrossRef]
- Bogdanov, L.V.; Manakov, S.V. Nonlocal -problem and (2+1)-dimensional soliton equations. J. Phys. A 1988, 21, L537–L544. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. Linear spectral problems, nonlinear equations and the -method. Inverse Prob. 1989, 5, 87. [Google Scholar] [CrossRef]
- Zhou, X. Inverse scattering transform for the time dependent Schrödinger equation with application to the KPI equation. Commun. Math. Phys. 1990, 128, 551–564. [Google Scholar] [CrossRef]
- Fokas, A.S.; Sung, L.Y. The inverse spectral method for KPI without the zero mass constraint. Math. Proc. Camb. Phil. Soc. 1999, 125, 113–138. [Google Scholar] [CrossRef]
- Boiti, M.; Pempinelli, F.; Pogrebkov, A.K.; Prinari, B. Towards an inverse scattering theory for nondecaying potentials of the heat equation. Inverse Prob. 2001, 17, 937–957. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H.W. Discussion on integrable properties for higher-dimensional variable-coefficient nonlinear partial differential equations. J. Math. Phys. 2013, 54, 013516. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Mei, J.Q.; Zhang, X.Z. Symmetry properties and explicit solutions of some nonlinear differential and fractional equations. Appl. Math. Comput. 2018, 337, 408–418. [Google Scholar] [CrossRef]
- Davey, A.; Stewartson, K. On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A 1974, 338, 101–110. [Google Scholar]
- Fokas, A.S. Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions. Phys. Rev. Lett. 2006, 96, 190201. [Google Scholar] [CrossRef]
- Fokas, A.S. Kadomtsev-Petviashvili equation revisited and integrability in 4+2 and 3+1. Stud. Appl. Math. 2009, 122, 347–359. [Google Scholar] [CrossRef]
- Fokas, A.S.; Van, W.M.C. Complexification and integrability in multidimensions. J. Math. Phys. 2018, 59, 091413. [Google Scholar] [CrossRef]
- Fokas, A.S.; Van, W.M.C. Solving the initial value problem for the 3-wave interaction equations in multidimensions. Comput. Methods Funct. Theory 2021, 21, 9–39. [Google Scholar]
- Fokas, A.S. Integrable Nonlinear Evolution Equations in Three Spatial Dimensions. Proc. R. Soc. A 2022, 478, 20220074. [Google Scholar] [CrossRef] [PubMed]
- Lü, N.; Mei, J.Q.; Zhang, H.Q. Symmetry Reductions and Group-Invariant Solutions of (2+1)-Dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada Equation. Commun. Theor. Phys. 2010, 53, 591–595. [Google Scholar]
- Gui, L.L.; Zhang, Y.F. Conservation laws of some multi-component integrable systems. Mod. Phys. Lett. B 2021, 24, 2150405. [Google Scholar] [CrossRef]
- SKrasil, I.S.; Morozov, O.I. Lagrangian extensions of multi-dimensional integrable equations. I. The five-dimensional Martnez Alonso-Shabat equation. Anal. Math. Phys. 2023, 13, 1–20. [Google Scholar]
- Qu, C.Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud. Appl. Math. 1997, 99, 107–136. [Google Scholar] [CrossRef]
- Cui, S.B.; Qu, C.Z. Initial boundary value problems for a class of nonlinear integro-partial differential equations. Appl. Math. Mech. 1994, 115, 389–404. [Google Scholar]
- Wang, H.F.; Zhang, Y.F. Application of Riemann-Hilbert method to an extended coupled nonlinear Schrodinger equations. J. Comput. Appl. Math. 2023, 420, 114812. [Google Scholar] [CrossRef]
- Beals, R.; Tomei, C. Direct and Inverse Scattering on the Line; American Mathematical Society: Providence, RI, USA, 1988. [Google Scholar]
- Zhang, H.Y.; Zhang, Y.F.; Feng, L.B. Long-time asymptotics for a complex cubic Camassa-Holm equation. Lett. Math. Phys. 2024, 114, 84. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Gui, L. Solutions of Cauchy Problems for the Caudrey–Dodd–Gibbon–Kotera–Sawada Equation in Three Spatial and Two Temporal Dimensions. Axioms 2025, 14, 11. https://doi.org/10.3390/axioms14010011
Zhang Y, Gui L. Solutions of Cauchy Problems for the Caudrey–Dodd–Gibbon–Kotera–Sawada Equation in Three Spatial and Two Temporal Dimensions. Axioms. 2025; 14(1):11. https://doi.org/10.3390/axioms14010011
Chicago/Turabian StyleZhang, Yufeng, and Linlin Gui. 2025. "Solutions of Cauchy Problems for the Caudrey–Dodd–Gibbon–Kotera–Sawada Equation in Three Spatial and Two Temporal Dimensions" Axioms 14, no. 1: 11. https://doi.org/10.3390/axioms14010011
APA StyleZhang, Y., & Gui, L. (2025). Solutions of Cauchy Problems for the Caudrey–Dodd–Gibbon–Kotera–Sawada Equation in Three Spatial and Two Temporal Dimensions. Axioms, 14(1), 11. https://doi.org/10.3390/axioms14010011