An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications
Abstract
:1. Introduction
2. Preliminaries
- 1.
- (Local fractional integration is anti-differentiation) Suppose that ; then, we have
- 2.
- (Local fractional integration by parts) Suppose that and ; then, we have
3. Main Results
4. Application to Quadrature Formula
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niculescu, C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3, 155–167. [Google Scholar] [CrossRef]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Mathematics in Science and Engineering, 187; Academic Press, Inc.: Boston, MA, USA, 1992. [Google Scholar]
- Meftah, B.; Lakhdari, A.; Benchettah, D.C. Some new Hermite-Hadamard type integral inequalities for twice differentiable s-convex functions. Comput. Math. Model. 2022, 33, 330–353. [Google Scholar] [CrossRef]
- Saleh, W.; Lakhdari, A.; Abdeljawad, T.; Meftah, B. On fractional biparameterized Newton-type inequalities. J. Inequal. Appl. 2023, 2023, 122. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Dragomir, S.S.; Yıldız, Ç. The Hadamard inequality for convex function via fractional integrals. Acta Math. Sci. Ser. B (Engl. Ed.) 2013, 33, 1293–1299. [Google Scholar] [CrossRef]
- Saleh, W.; Meftah, B.; Lakhdari, A. Quantum dual Simpson type inequalities for q-differentiable convex functions. Int. J. Nonlinear Anal. Appl. 2023, 14, 63–76. [Google Scholar]
- Zhu, W.S.; Meftah, B.; Xu, H.; Jarad, F.; Lakhdari, A. On parameterized inequalities for fractional multiplicative integrals. Demonstr. Math. 2024, 57, 20230155. [Google Scholar] [CrossRef]
- Meftah, B.; Lakhdari, A. Saleh, W. 2-point left Radau-type inequalities via s-convexity. J. Appl. Anal. 2023, 29, 341–346. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1. [Google Scholar]
- Shang, J.; Wang, Y.; Chen, M.; Dai, J.; Zhou, X.; Kuttner, J.; Hilt, G.; Shao, X.; Gottfried, J.M.; Wu, K. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 2015, 7, 389–393. [Google Scholar] [CrossRef]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Gao, F.; Zhong, W.P.; Shen, X.M. Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Adv. Mater. Res. 2012, 461, 306–310. [Google Scholar]
- Yang, Y.J.; Baleanu, D.; Yang, X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 2013, 632309. [Google Scholar] [CrossRef]
- Yang, A.M.; Chen, Z.S.; Srivastava, H.M.; Yang, X.J. Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators. Abstr. Appl. Anal. 2013, 2013, 259125. [Google Scholar] [CrossRef]
- Yang, X.J. Advanced Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
- Xu, H.; Lakhdari, A.; Saleh, W.; Meftah, B. Some New Parametrized Inequalities on Fractal Set. Fractals 2024, 32, 2450063. [Google Scholar] [CrossRef]
- Du, T.; Yuan, X. On the parameterized fractal integral inequalities and related applications. Chaos Solitons Fractals 2023, 170, 113375. [Google Scholar] [CrossRef]
- Li, H.; Lakhdari, A.; Jarad, F.; Xu, H.; Meftah, B. An expanded analysis of local fractional integral inequalities via generalized (s,P)-convexity. J. Inequal. Appl. 2024, 2024, 78. [Google Scholar] [CrossRef]
- Xu, H.; Lakhdari, A.; Jarad, F.; Abdeljawad, T.; Meftah, T. On multiparametrized integral inequalities via generalized α-convexity on fractal set. Math. Meth. Appl. Sci. 2024. [Google Scholar] [CrossRef]
- Saleh, W.; Meftah, B.; Lakhdari, A.; Kiliçman, A. Exploring the Companion of Ostrowski’s Inequalities via Local Fractional Integrals. Eur. J. Pure Appl. Math. 2023, 16, 1359–1380. [Google Scholar] [CrossRef]
- Lakhdari, A.; Meftah, B.; Saleh, W.; Benchettah, D. Corrected Simpson’s second formula inequalities on fractal set. Fract. Differ. Calc. 2024, 14, 1–19. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
- Anastassiou, G.; Kashuri, A.; Liko, R. Local fractional integrals involving generalized strongly m-convex mappings. Arab. J. Math. 2019, 8, 95–107. [Google Scholar] [CrossRef]
- Lakhdari, A.; Meftah, B.; Saleh, W. On corrected Simpson-type inequalities via local fractional integrals. Georgian Math. J. 2024. [Google Scholar] [CrossRef]
- Du, T.; Wang, H.; Khan, M.A.; Zhang, Y. Certain integral inequalities considering generalized m-convexity on fractal sets and their applications. Fractals 2019, 27, 1950117. [Google Scholar] [CrossRef]
- Kashuri, A.; Raees, M.; Anwar, M.; Farid, G. On some Ostrowski type inequalities on fractal sets via generalized strongly m-convex mappings. Ann. Oradea Univ.-Math. Fasc. 2020, 27, 81–100. [Google Scholar]
- Khan, Z.A.; Rashid, S.; Ashraf, R.; Baleanu, D.; Chu, Y.-M. Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property. Adv. Differ. Equ. 2020, 2020, 657. [Google Scholar] [CrossRef]
- Luo, C.; Wang, H.; Du, T. Fejér-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications. Chaos Solitons Fractals 2020, 131, 109547. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Iftikhar, S.; Awan, M.U. Fractal integral inequalities for harmonic convex functions. Appl. Math. Inf. Sci. 2018, 12, 831–839. [Google Scholar] [CrossRef]
- Saleh, W.; Lakhdari, A.; Almutairi, O.; Kiliçman, A. Some Remarks on Local Fractional Integral Inequalities Involving Mittag–Leffler Kernel Using Generalized (E,h)-Convexity. Mathematics 2023, 11, 1373. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Budak, H.; Erden, S. On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 2019, 27, 279–295. [Google Scholar]
- Vivas-Cortez, M.; Awan, M.U.; Asif, U.; Javed, M.Z.; Budak, H. Advances in Ostrowski-Mercer Like Inequalities within Fractal Space. Fractal Fract. 2023, 7, 689. [Google Scholar] [CrossRef]
- Yu, Y.; Du, T. Certain error bounds on the Bullen type integral inequalities in the framework of fractal spaces. J. Nonlinear Funct. Anal. 2022, 2022, 24. [Google Scholar]
- Yu, Y.; Liu, J.; Du, T. Certain error bounds on the parameterized integral inequalities in the sense of fractal sets. Chaos Solitons Fractals 2022, 161, 112328. [Google Scholar] [CrossRef]
- Chen, G.-S. Generalizations of Hölder’s and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 2013, 198405. [Google Scholar] [CrossRef]
- Yu, S.H.; Mohammed, P.O.; Xu, L.; Du, T. An improvement of the power-mean integral inequality in the frame of fractal space and certain related midpoint-type integral inequalities. Fractals 2022, 30, 2250085. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin-Mohsin, B.; Lakhdari, A.; Karabadji, N.E.I.; Awan, M.U.; Makhlouf, A.B.; Meftah, B.; Dragomir, S.S. An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications. Axioms 2024, 13, 653. https://doi.org/10.3390/axioms13090653
Bin-Mohsin B, Lakhdari A, Karabadji NEI, Awan MU, Makhlouf AB, Meftah B, Dragomir SS. An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications. Axioms. 2024; 13(9):653. https://doi.org/10.3390/axioms13090653
Chicago/Turabian StyleBin-Mohsin, Bandar, Abdelghani Lakhdari, Nour El Islem Karabadji, Muhammad Uzair Awan, Abdellatif Ben Makhlouf, Badreddine Meftah, and Silvestru Sever Dragomir. 2024. "An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications" Axioms 13, no. 9: 653. https://doi.org/10.3390/axioms13090653
APA StyleBin-Mohsin, B., Lakhdari, A., Karabadji, N. E. I., Awan, M. U., Makhlouf, A. B., Meftah, B., & Dragomir, S. S. (2024). An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications. Axioms, 13(9), 653. https://doi.org/10.3390/axioms13090653