Next Article in Journal
Two-Dimensional Time Fractional River-Pollution Model and Its Remediation by Unsteady Aeration
Previous Article in Journal
Investigation of the Oscillatory Properties of Fourth-Order Delay Differential Equations Using a Comparison Approach with First- and Second-Order Equations
Previous Article in Special Issue
A New Nonlinear Integral Inequality with a Tempered Ψ–Hilfer Fractional Integral and Its Application to a Class of Tempered Ψ–Caputo Fractional Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications

by
Bandar Bin-Mohsin
1,
Abdelghani Lakhdari
2,
Nour El Islem Karabadji
2,
Muhammad Uzair Awan
3,*,
Abdellatif Ben Makhlouf
4,
Badreddine Meftah
5 and
Silvestru Sever Dragomir
6
1
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2
Laboratory of Energy Systems Technology, National Higher School of Technology and Engineering, Annaba 23005, Algeria
3
Department of Mathematics, Government College University Faisalabad, Faisalabad 38000, Pakistan
4
Department of Mathematics, Faculty of Sciences, University of Sfax, BP 1171, Sfax 3000, Tunisia
5
Laboratory of Analysis and Control of Differential Equations ‘ACED’, Department of Mathematics, 8 May 1945 University, Guelma 24000, Algeria
6
Department of Mathematics, College of Engineering & Science, Victoria University, P.O. Box 14428, Melbourne City, VIC 8001, Australia
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(9), 653; https://doi.org/10.3390/axioms13090653
Submission received: 6 August 2024 / Revised: 10 September 2024 / Accepted: 21 September 2024 / Published: 23 September 2024
(This article belongs to the Special Issue Recent Advances in Fractional Differential Equations and Inequalities)

Abstract

:
In this study, we introduce a novel local fractional integral identity related to the Gaussian two-point left Radau rule. Based on this identity, we establish some new fractal inequalities for functions whose first-order local fractional derivatives are generalized convex and concave. The obtained results not only represent an extension of certain previously established findings to fractal sets but also a refinement of these when the fractal dimension μ is equal to one. Finally, to support our findings, we present a practical application to demonstrate the effectiveness of our results.

1. Introduction

Convexity, a central concept in mathematical analysis, holds pivotal significance in both pure and applied mathematics. A function ð : I R defined on an interval I is considered convex if, for any ϰ 1 , ϰ 2 I and t [ 0 , 1 ] , the following condition holds [1]:
ð ( t ϰ 1 + ( 1 t ) ϰ 2 ) t ð ( ϰ 1 ) + ( 1 t ) ð ( ϰ 2 ) .
This geometric and analytical property offers a profound understanding of the behavior of mathematical functions; see [2].
Convex functions play a fundamental role in various mathematical disciplines, with far-reaching implications in optimization, economics, and approximation theory. In the realm of approximation, the study of convexity becomes particularly compelling. It provides a robust framework for understanding the approximation quality of integrals, and one of the key results in this context is the Hermite–Hadamard inequality which can be expressed as follows: for a convex function ð : I R defined on a closed interval [ 1 , 2 ] , we have:
ð 1 + 2 2 1 2 1 1 2 ð ( ϰ ) d ϰ ð ( 1 ) + ð ( 2 ) 2 .
This inequality establishes a profound relationship between the average of a real-valued function over an interval and its endpoint values. It serves as a powerful tool in analyzing the behavior of convex functions and has wide-ranging applications in diverse mathematical and scientific fields.
Several results regarding error estimates of Newton–Cotes formulas via convexity have been established; see [3,4,5,6,7] and the references therein. However, the literature suffers from a significant gap concerning error estimates for Gauss quadrature rules, primarily due to their non-symmetric nature, which complicates the task. Among the limited existing results, the authors in [8] have established the following result concerning the two-point left Radau rule.
Theorem 1.
Let ð : 1 , 2 R be a differentiable function on 1 , 2 such that ð L 1 1 , 2 . If ð is convex on 1 , 2 , then
ð 1 + 3 ð 1 + 2 2 3 4 1 2 1 2 1 ð ( ϰ ) d ϰ 25 2 1 72 157 ð 1 + 379 ð 1 + 2 2 3 + 64 ð 2 600 .
A fractal set is a mathematical construct that exhibits self-similarity at various scales. Unlike traditional geometric shapes with integer dimensions (such as squares or circles), fractals often have non-integer or fractional dimensions. The defining characteristic of a fractal is the repetition of similar patterns at different levels of magnification. This property makes fractals particularly fascinating in the realms of mathematics, art, and nature.
The Mandelbrot set [9], Sierpinski triangle [10], and Koch snowflake [11] are well-known examples of fractal sets. Fractals find applications in diverse fields, including computer graphics, image compression, and the modeling of natural phenomena like coastlines and mountain landscapes.
Local fractional calculus is an extension of classical calculus that deals with derivatives and integrals in the context of functions with a fractal or non-integer dimension. Unlike traditional calculus, which operates on functions with integer dimensions, local fractional calculus allows for the analysis of functions defined on fractal sets [12,13,14].
Yang introduced the concept of generalized convexity applied to fractal sets in [15]. This concept is defined as follows:
Definition 1.
Consider ð : I R R μ , where μ ( 0 , 1 ] is the fractal dimension. If for any ϰ 1 , ϰ 2 I and t [ 0 , 1 ] , the inequality
ð t ϰ 1 + 1 t ϰ 2 t μ ð ϰ 1 + 1 t μ ð ϰ 2
holds, then ð is termed generalized convex on I. If the inequality holds in the reverse direction, then ð is termed generalized concave.
Since the inception of this concept, numerous research efforts have aimed to extend classical findings regarding integral inequalities to the realm of fractals. Notably, Xu et al. made a significant contribution by presenting a series of fractal dual Simpson-like inequalities in [16]. Du and Yuan, in [17], conducted a parameterized study where they established several interesting fractal inequalities related to three-point Newton–Cotes formulas. Li et al. focused on four-point formulas and derived some local fractional inequalities using generalized ( s , P ) -convexity in [18]. A more noteworthy study was carried out by Xu et al. in [19], where the authors established a fractal Hermite–Hadamard inequality for generalized α -convex functions. They further conducted an extensive investigation, establishing numerous inequalities for different types of one, two, three, and four-point Newton–Cotes rules using the same form of convexity. For additional works on this subject, the readers are referred to [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34].
In this article, we extend the two-point left Radau inequality to the framework of local fractional integrals. To achieve this, we begin by introducing a new local fractional integral identity from which we establish our results. The study is concluded with several applications.

2. Preliminaries

Definition 2
([15]). A non-differentiable function ð : R R μ is local fractional continuous at ϰ 0 , if
ϵ > 0 , δ > 0 : ð ϰ ð ϰ 0 < ϵ μ
holds for ϰ ϰ 0 < δ . We denote the set of all local fractional continuous functions on 1 , 2 by C μ 1 , 2 .
Definition 3
([15]). The local fractional derivative of ð ( ϰ ) of order μ at ϰ = ϰ 0 is defined as:
ð μ ϰ 0 = d μ ð ϰ d ϰ μ ϰ = ϰ 0 = lim ϰ ϰ 0 Δ μ ð ϰ ð ϰ 0 ϰ ϰ 0 μ ,
where Δ μ ð ϰ ð ϰ 0 Γ μ + 1 ð ϰ ð ϰ 0 .
We denote the set of all local fractional differentiable functions on 1 , 2 by D μ 1 , 2 .
Definition 4
([15]). Let ð ( ϰ ) C μ 1 , 2 . Then, the local fractional integral is defined by,
I 2 μ 1 ð ϰ = 1 Γ μ + 1 2 1 ð t d t μ = 1 Γ μ + 1 lim Δ t 0 j = 0 N 1 ð ϰ j Δ ϰ j μ
with Δ ϰ j = ϰ j + 1 ϰ j and Δ t = max Δ ϰ 1 , Δ ϰ 2 , , Δ ϰ N 1 , where ϰ j , ϰ j + 1 , j = 0 , 1 , ,   N 1 and 1 = ϰ 0 < ϰ 1 < < ϰ N = 2 is a partition of interval 1 , 2 .
Here, it follows that I 2 μ 1 ð ϰ = 0 if 1 = 2 and I 2 μ 1 ð ϰ = 2 I 1 μ ð ϰ if 1 < 2 . If for any ϰ [ 1 , 2 ] , there exists I 2 μ 1 ð ϰ , then we denote it by ð ϰ I u μ 1 , 2 .
Lemma 1
([15]).
1. 
(Local fractional integration is anti-differentiation) Suppose that ð ϰ = μ ϰ C μ 1 , 2 ; then, we have
I 2 μ 1 ð ϰ = 2 1 .
2. 
(Local fractional integration by parts) Suppose that ð , D μ 1 , 2 and ð μ ϰ , μ ϰ C μ 1 , 2 ; then, we have
I 2 μ 1 ð ϰ μ ϰ = ð ϰ ϰ 1 2 I 2 μ 1 ð μ ϰ ϰ .
Lemma 2
([15]). For s R , the following identities hold
d μ ϰ s μ d ϰ μ = Γ 1 + s μ Γ 1 + s 1 μ ϰ s 1 μ , 1 Γ 1 + μ 2 1 ϰ s μ d ϰ μ = Γ 1 + s μ Γ 1 + s + 1 μ 2 s + 1 μ 1 s + 1 μ .
Lemma 3
(Generalized Hölder’s inequality [35]).
Let ð , C μ 1 , 2 and ð ϰ p , ϰ q where p , q > 1 with 1 p + 1 q = 1 , be both integrable under the frame of the fractal spaces; then, we have
1 Γ 1 + μ 2 1 ð ϰ ϰ d ϰ μ 1 Γ 1 + μ 2 1 ð ϰ p d ϰ μ 1 p 1 Γ 1 + μ 2 1 ϰ q d ϰ μ 1 q .
Lemma 4
(Generalized power mean inequality [35]).
Let ð , C μ 1 , 2 and ð ϰ , ð ϰ ϰ q where q > 1 be both integrable under the frame of the fractal spaces; then, we have
1 Γ 1 + μ 2 1 ð ϰ ϰ d ϰ μ 1 Γ 1 + μ 2 1 ð ϰ d ϰ μ 1 1 q 1 Γ 1 + μ 2 1 ð ϰ ϰ q d ϰ μ 1 q .
Lemma 5
(Improved generalized power mean inequality [36]).
Let ð , C μ 1 , 2 and ð ϰ , ð ϰ ϰ q where q > 1 be both integrable under the frame of the fractal spaces; then, we have
1 Γ 1 + μ 2 1 ð ϰ ϰ d ϰ μ 1 2 1 μ 1 Γ 1 + μ 2 1 2 ϰ μ ð ϰ d ϰ μ 1 1 q 1 Γ 1 + μ 2 1 2 ϰ μ ð ϰ ϰ q d ϰ μ 1 q + 1 Γ 1 + μ 2 1 ϰ 1 μ ð ϰ d ϰ μ 1 1 q 1 Γ 1 + μ 2 1 ϰ 1 μ ð ϰ ϰ q d ϰ μ 1 q .

3. Main Results

The following lemma functions as the crucial and principal instrument for establishing the outcomes of our research.
Lemma 6
Let ð : I R μ be a function such that ð D μ I , 1 , 2 I with 1 < 2 , and ð μ C μ 1 , 2 , then the following equality holds for μ > 0 :
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ = 2 1 μ 9 μ 1 Γ μ + 1 1 0 t 3 4 μ ð μ 1 t 1 + t 2 1 + 2 3 d t μ + 1 Γ μ + 1 1 0 1 4 + t μ ð μ 1 t 2 1 + 2 3 + t 1 + 2 2 3 d t μ + 1 Γ μ + 1 1 0 t 1 μ ð μ 1 t 1 + 2 2 3 + t 2 d t μ ,
where
I 2 μ 1 ð ϰ = 1 Γ μ + 1 2 1 ð ϰ d ϰ μ .
Proof. 
Let
I = I 1 + I 2 + I 3 ,
where
I 1 = 1 Γ μ + 1 1 0 t 3 4 μ ð μ 1 t 1 + t 2 1 + 2 3 d t μ , I 2 = 1 Γ μ + 1 1 0 1 4 + t μ ð μ 1 t 2 1 + 2 3 + t 1 + 2 2 3 d t μ
and
I 3 = 1 Γ μ + 1 1 0 t 1 μ ð μ 1 t 1 + 2 2 3 + t 2 d t μ .
Using Lemma 1, I 1 gives
I 1 = 3 μ 2 1 μ t 3 4 μ ð 1 t 1 + t 2 1 + 2 3 0 1 3 μ Γ μ + 1 2 1 μ 1 0 ð 1 t 1 + t 2 1 + 2 3 d t μ = 3 μ 4 μ 2 1 μ ð 2 1 + 2 3 + 9 μ 4 μ 2 1 μ ð 1 9 μ Γ μ + 1 2 1 2 μ Γ μ + 1 2 1 + 2 3 1 ð ϰ d ϰ μ .
Similarly, we obtain
I 2 = 3 μ 2 1 μ 1 4 + t μ ð 1 t 2 1 + 2 3 + t 1 + 2 2 3 0 1 3 μ Γ μ + 1 2 1 μ 1 0 ð 1 t 2 1 + 2 3 + t 1 + 2 2 3 d t μ = 15 μ 4 μ 2 1 μ ð 1 + 2 2 3 3 μ 4 μ 2 1 μ ð 2 1 + 2 3 9 μ Γ μ + 1 2 1 2 μ Γ μ + 1 1 + 2 2 3 2 1 + 2 3 ð ϰ d ϰ μ
and
I 3 = 3 μ 2 1 μ t 1 μ ð 1 t 1 + 2 2 3 + t 2 0 1 3 μ Γ μ + 1 2 1 μ 1 0 ð 1 t 1 + 2 2 3 + t 2 d t μ = 3 μ 2 1 μ ð 1 + 2 2 3 9 μ Γ μ + 1 2 1 2 μ Γ μ + 1 2 1 + 2 2 3 ð ϰ d ϰ μ .
Using (2)–(4) in (1), then multiplying the resulting equality by 2 1 μ 9 μ , we obtain the desired result. □
Theorem 2.
Assume that all the assumptions of Lemma 6 are satisfied. If ð μ is generalized convex on 1 , 2 , then we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 31 32 μ Γ 1 + 2 μ Γ 1 + 3 μ 7 32 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 + 43 32 μ Γ 1 + μ Γ 1 + 2 μ 27 32 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 1 + 2 3 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ + 1 4 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 + 2 2 3 + Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 .
Proof. 
From Lemma 6 and the properties of the modulus, we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 1 Γ μ + 1 1 0 t 3 4 μ ð μ 1 t 1 + t 2 1 + 2 3 d t μ + 1 Γ μ + 1 1 0 1 4 + t μ ð μ 1 t 2 1 + 2 3 + t 1 + 2 2 3 d t μ + 1 Γ μ + 1 1 0 t 1 μ ð μ 1 t 1 + 2 2 3 + t 2 d t μ .
Using the generalized convexity of ð μ , we obtain
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 1 Γ μ + 1 1 0 t 3 4 μ 1 t μ ð μ 1 + t μ ð μ 2 1 + 2 3 d t μ + 1 Γ μ + 1 1 0 1 4 + t μ 1 t μ ð μ 2 1 + 2 3 + t μ ð μ 1 + 2 2 3 d t μ + 1 Γ μ + 1 1 0 t 1 μ 1 t μ ð μ 1 + 2 2 3 + t μ ð μ 2 d t μ = 2 1 μ 9 μ 31 32 μ Γ 1 + 2 μ Γ 1 + 3 μ 7 32 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 + 43 32 μ Γ 1 + μ Γ 1 + 2 μ 27 32 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 1 + 2 3 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ + 1 4 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 + 2 2 3 + Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 ,
where we have used
1 Γ μ + 1 1 0 t 3 4 μ 1 t μ d t μ = 31 32 μ Γ 1 + 2 μ Γ 1 + 3 μ 7 32 μ Γ 1 + μ Γ 1 + 2 μ ,
1 Γ μ + 1 1 0 t 3 4 μ t μ d t μ = 5 32 μ Γ 1 + 2 μ Γ 1 + 3 μ + 3 32 μ Γ 1 + μ Γ 1 + 2 μ ,
1 Γ μ + 1 1 0 1 4 + t μ 1 t μ d t μ = 5 4 μ Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ ,
1 Γ μ + 1 1 0 1 4 + t μ t μ d t μ = Γ 1 + 2 μ Γ 1 + 3 μ + 1 4 μ Γ 1 + μ Γ 1 + 2 μ ,
1 Γ μ + 1 1 0 t 1 μ 1 t μ d t μ = Γ 1 + 2 μ Γ 1 + 3 μ
and
1 Γ μ + 1 1 0 t 1 μ t μ d t μ = Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ .
Thus, the proof is completed. □
Corollary 1.
In Theorem 2, if μ 1 , we obtain the following result for the Riemann integral.
1 4 ð 1 + 3 ð 1 + 2 2 3 1 2 1 1 0 ð ϰ d ϰ 2 1 9 41 ð 1 + 75 ð 2 1 + 2 3 + 152 ð 1 + 2 2 3 + 32 ð 2 192 .
Remark 1.
Corollary 1 constitutes a refinement of the result established in Corollary 1 from [8], as the latter can be inferred by leveraging the convexity of ð with respect to the term ð 2 1 + 2 3 , specifically, ð 2 1 + 2 3 1 2 ð 1 + ð 1 + 2 2 3 .
Corollary 2.
In Theorem 2, using the generalized convexity of ð ( μ ) with respect to the terms ð ( μ ) 2 1 + 2 3 and ð ( μ ) 1 + 2 2 3 , i.e., ð ( μ ) a 1 + b 2 a + b a μ ( a + b ) μ ð ( μ ) 1 + b μ ( a + b ) μ ð ( μ ) 2 , we obtain the following inequality, which involves only the endpoints.
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 27 μ 103 32 μ Γ 1 + 2 μ Γ 1 + 3 μ + 73 32 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 + 155 32 μ Γ 1 + μ Γ 1 + 2 μ + 5 32 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 .
Now, to validate the accuracy of the result obtained in Theorem 2, we provide a numerical example along with a graphical representation to support the results.
Example 1.
Consider the function ð : [ 0 , 1 ] R μ defined by ð ( ϰ ) = Γ 1 + α μ Γ 1 + ( α + 1 ) μ ϰ ( α + 1 ) μ with α 1 . This function satisfies the conditions of our study, as its local fractional derivative, given by ð ( μ ) ( ϰ ) = ϰ α μ , is convex on the interval [ 1 , 2 ] = [ 0 , 1 ] .
Let us note that for the function considered, Corollary 1 gives:
1 α + 1 3 4 2 3 α + 1 1 α + 2 1 1728 75 1 3 α + 152 2 3 α + 32 .
The result above is graphically represented in Figure 1, where the red curve corresponds to the left-hand side, and the blue curve represents the right-hand side.
The representation shown in Figure 1 confirms the accuracy and precision of the result obtained in Theorem 2.
Theorem 3.
Assume that all the assumptions of Lemma 6 are satisfied. If ð μ q is generalized convex, then we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ Γ 1 + p μ Γ 1 + p + 1 μ 1 p Γ 1 + μ Γ 1 + 2 μ 1 q × 1 + 3 p + 1 4 p + 1 μ p ð μ 1 q + ð μ 2 1 + 2 3 q 1 q + 5 p + 1 1 4 p + 1 μ p ð μ 2 1 + 2 3 q + ð μ 1 + 2 2 3 q 1 q + ð μ 2 1 + 2 3 q + ð μ 2 q 1 q ,
where p , q > 1 with 1 p + 1 q = 1 .
Proof. 
From Lemma 6 and the properties of the modulus along with the generalized Hölder inequality, we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 1 Γ μ + 1 1 0 t 3 4 p μ d t μ 1 p 1 Γ μ + 1 1 0 ð μ 1 t 1 + t 2 1 + 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 1 4 + t p μ d t μ 1 p 1 Γ μ + 1 1 0 ð μ 1 t 2 1 + 2 3 + t 1 + 2 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 t 1 p μ d t μ 1 p 1 Γ μ + 1 1 0 ð μ 1 t 1 + 2 2 3 + t 2 q d t μ 1 q .
Using the generalized convexity of ð μ q , we obtain
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 1 Γ μ + 1 1 0 t 3 4 p μ d t μ 1 p × 1 Γ μ + 1 1 0 1 t μ ð μ 1 q + t μ ð μ 2 1 + 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 1 4 + t p μ d t μ 1 p × 1 Γ μ + 1 1 0 1 t μ ð μ 2 1 + 2 3 q + t μ ð μ 1 + 2 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 t 1 p μ d t μ 1 p × 1 Γ μ + 1 1 0 1 t μ ð μ 1 + 2 2 3 q + t μ ð μ 2 q d t μ 1 q = 2 1 μ 9 μ Γ 1 + p μ Γ 1 + p + 1 μ 1 p Γ 1 + μ Γ 1 + 2 μ 1 q × 1 + 3 p + 1 4 p + 1 μ p ð μ 1 q + ð μ 2 1 + 2 3 q 1 q + 5 p + 1 1 4 p + 1 μ p ð μ 2 1 + 2 3 q + ð μ 1 + 2 2 3 q 1 q + ð μ 2 1 + 2 3 q + ð μ 2 q 1 q ,
where we have used
1 Γ μ + 1 1 0 t 3 4 p μ d t μ = Γ 1 + p μ Γ 1 + p + 1 μ 3 4 p + 1 + 1 4 p + 1 μ ,
1 Γ μ + 1 1 0 1 4 + t p μ d t μ = Γ 1 + p μ Γ 1 + p + 1 μ 5 4 p + 1 1 4 p + 1 μ
and
1 Γ μ + 1 1 0 t 1 p μ d t μ = Γ 1 + p μ Γ 1 + p + 1 μ .
The proof is completed. □
Corollary 3.
In Theorem 3, using the generalized convexity of ð μ q with respect to the terms ð ( μ ) 2 1 + 2 3 q and ð ( μ ) 1 + 2 2 3 q , we obtain
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ Γ 1 + p μ Γ 1 + p + 1 μ 1 p 2 μ Γ 1 + μ Γ 1 + 2 μ 1 q 1 + 3 p + 1 4 p + 1 μ p 5 μ ð μ 1 q + ð μ 2 q 6 μ 1 q + 5 p + 1 1 4 p + 1 μ p ð μ 1 q + ð μ 2 q 2 μ 1 q + ð μ 1 q + 2 μ ð μ 2 q 3 μ 1 q .
Theorem 4.
Assume that all the assumptions of Lemma 6 are satisfied. If ð μ q is generalized convex for q > 1 , then we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ Γ 1 + μ Γ 1 + 2 μ 1 1 q 5 8 μ 1 1 q 31 32 μ Γ 1 + 2 μ Γ 1 + 3 μ 7 32 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 q + 3 32 μ Γ 1 + μ Γ 1 + 2 μ + 5 32 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 1 + 2 3 q 1 q + 3 2 μ 1 1 q 5 4 μ Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 1 + 2 3 q + Γ 1 + 2 μ Γ 1 + 3 μ + 1 4 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 + 2 2 3 q 1 q + Γ 1 + 2 μ Γ 1 + 3 μ ð μ 1 + 2 2 3 q + Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 q 1 q .
Proof. 
From Lemma 6 and the properties of the modulus along with the generalized power mean inequality, we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 1 Γ μ + 1 1 0 t 3 4 μ d t μ 1 1 q 1 Γ μ + 1 1 0 t 3 4 μ ð μ 1 t 1 + t 2 1 + 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 1 4 + t μ d t μ 1 1 q 1 Γ μ + 1 1 0 1 4 + t μ ð μ 1 t 2 1 + 2 3 + t 1 + 2 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 t 1 μ d t μ 1 1 q 1 Γ μ + 1 1 0 t 1 μ ð μ 1 t 1 + 2 2 3 + t 2 q d t μ 1 q .
Using the generalized convexity of ð μ q , we obtain
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 1 Γ μ + 1 1 0 t 3 4 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 t 3 4 μ 1 t μ ð μ 1 q + t μ ð μ 2 1 + 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 1 4 + t μ d t μ 1 1 q × 1 Γ μ + 1 1 0 1 4 + t μ 1 t μ ð μ 2 1 + 2 3 q + t μ ð μ 1 + 2 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 t 1 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 t 1 μ 1 t μ ð μ 1 + 2 2 3 q + t μ ð μ 2 q d t μ 1 q = 2 1 μ 9 μ Γ 1 + μ Γ 1 + 2 μ 5 8 μ 1 1 q × ð μ 1 q Γ μ + 1 1 0 t 3 4 μ 1 t μ d t μ + ð μ 2 1 + 2 3 q Γ μ + 1 1 0 t 3 4 μ t μ d t μ 1 q + 3 2 μ 1 1 q ð μ 2 1 + 2 3 q Γ μ + 1 1 0 1 4 + t μ 1 t μ d t μ + ð μ 1 + 2 2 3 q Γ μ + 1 1 0 1 4 + t μ t μ d t μ 1 q + Γ 1 + μ Γ 1 + 2 μ 1 1 q ð μ 1 + 2 2 3 q Γ μ + 1 1 0 t 1 μ 1 t μ d t μ + ð μ 2 q Γ μ + 1 1 0 t 1 μ t μ d t μ 1 q = 2 1 μ 9 μ Γ 1 + μ Γ 1 + 2 μ 1 1 q 5 8 μ 1 1 q 31 32 μ Γ 1 + 2 μ Γ 1 + 3 μ 7 32 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 q + 3 32 μ Γ 1 + μ Γ 1 + 2 μ + 5 32 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 1 + 2 3 q 1 q + 3 2 μ 1 1 q 5 4 μ Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 1 + 2 3 q + Γ 1 + 2 μ Γ 1 + 3 μ + 1 4 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 + 2 2 3 q 1 q + Γ 1 + 2 μ Γ 1 + 3 μ ð μ 1 + 2 2 3 q + Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 q 1 q ,
where we have used (5)–(13).
This completes the proof. □
Corollary 4.
In Theorem 4, using the generalized convexity of ð μ q with respect to the terms ð ( μ ) 2 1 + 2 3 q and ð ( μ ) 1 + 2 2 3 q , we obtain
1 4 μ λ μ λ μ ð 1 + 3 μ λ μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ Γ 1 + μ Γ 1 + 2 μ 1 1 q 5 8 μ 1 1 q 103 96 μ Γ 1 + 2 μ Γ 1 + 3 μ 15 96 μ Γ 1 + μ Γ 1 + 2 μ ð μ 1 q + 5 96 μ Γ 1 + 2 μ Γ 1 + 3 μ + 1 32 μ Γ 1 + μ Γ 1 + 2 μ ð μ 2 q 1 q + 3 2 μ 1 1 q 11 12 μ Γ 1 + μ Γ 1 + 2 μ 1 3 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 1 q + 1 3 μ Γ 1 + 2 μ Γ 1 + 3 μ + 7 12 μ Γ 1 + μ Γ 1 + 2 μ ð μ 2 q 1 q + 1 3 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 1 q + Γ 1 + μ Γ 1 + 2 μ 1 3 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ 2 q 1 q .
In [36], Yu et al. presented an improved version of the power mean inequality given in Lemma 5. In the following theorem, we apply this new inequality to derive a more refined result than the one obtained in Theorem 4.
Theorem 5.
Assume that all the assumptions of Lemma 6 are satisfied. If ð μ q is generalized convex for q > 1 , then we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ A 1 μ 1 1 q A 2 μ ð μ 1 q + A 3 μ ð μ 2 1 + 2 3 q 1 q + A 4 μ 1 1 q A 3 μ ð μ 1 q + A 5 μ ð μ 2 1 + 2 3 q 1 q + B 1 μ 1 1 q B 2 μ ð μ 2 1 + 2 3 q + B 3 μ ð μ 1 + 2 2 3 q 1 q + B 4 μ 1 1 q B 3 μ ð μ 2 1 + 2 3 q + B 5 μ ð μ 1 + 2 2 3 q 1 q + C 1 μ 1 1 q C 2 μ ð μ 1 + 2 2 3 q + C 3 μ ð μ 2 q 1 q + C 4 μ 1 1 q C 3 μ ð μ 1 + 2 2 3 q + C 5 μ ð μ 2 q 1 q ,
where A i , B i , and C i are defined for i = 1 , 2 , , 5 by (14)–(28), respectively.
Proof. 
From Lemma 6 and the improved generalized power mean inequality along with the generalized convexity of ð μ q , we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 1 Γ μ + 1 1 0 1 t μ t 3 4 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 1 t μ t 3 4 μ ð μ 1 t 1 + t 2 1 + 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 t μ t 3 4 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 t μ t 3 4 μ ð μ 1 t 1 + t 2 1 + 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 1 t μ t + 1 4 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 1 t μ t + 1 4 μ ð μ 1 t 2 1 + 2 3 + t 1 + 2 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 t μ t + 1 4 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 t μ t + 1 4 μ ð μ 1 t 2 1 + 2 3 + t 1 + 2 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 1 t μ t 1 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 1 t μ t 1 μ ð μ 1 t 1 + 2 2 3 + t 2 q d t μ 1 q + 1 Γ μ + 1 1 0 t μ t 1 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 t μ t 1 μ ð μ 1 t 1 + 2 2 3 + t 2 q d t μ 1 q 2 1 μ 9 μ 1 Γ μ + 1 1 0 1 t μ t 3 4 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 1 t μ t 3 4 μ 1 t μ ð μ 1 q + t μ ð μ 2 1 + 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 t μ t 3 4 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 t μ t 3 4 μ 1 t μ ð μ 1 q + t μ ð μ 2 1 + 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 1 t μ t + 1 4 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 1 t μ t + 1 4 μ 1 t μ ð μ 2 1 + 2 3 q + t μ ð μ 1 + 2 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 t μ t + 1 4 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 t μ t + 1 4 μ 1 t μ ð μ 2 1 + 2 3 q + t μ ð μ 1 + 2 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 1 t μ t 1 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 1 t μ t 1 μ 1 t μ ð μ 1 + 2 2 3 q + t μ ð μ 2 q d t μ 1 q + 1 Γ μ + 1 1 0 t μ t 1 μ d t μ 1 1 q × 1 Γ μ + 1 1 0 t μ t 1 μ 1 t μ ð μ 1 + 2 2 3 q + t μ ð μ 2 q d t μ 1 q = 2 1 μ 9 μ A 1 μ 1 1 q A 2 μ ð μ 1 q + A 3 μ ð μ 2 1 + 2 3 q 1 q + A 4 μ 1 1 q A 3 μ ð μ 1 q + A 5 μ ð μ 2 1 + 2 3 q 1 q + B 1 μ 1 1 q B 2 μ ð μ 2 1 + 2 3 q + B 3 μ ð μ 1 + 2 2 3 q 1 q + B 4 μ 1 1 q B 3 μ ð μ 2 1 + 2 3 q + B 5 μ ð μ 1 + 2 2 3 q 1 q + C 1 μ 1 1 q C 2 μ ð μ 1 + 2 2 3 q + C 3 μ ð μ 2 q 1 q + C 4 μ 1 1 q C 3 μ ð μ 1 + 2 2 3 q + C 5 μ ð μ 2 q 1 q ,
where we have used
A 1 μ = 1 Γ μ + 1 1 0 1 t μ t 3 4 μ d t μ = 31 32 μ Γ 1 + 2 μ Γ 1 + 3 μ 7 32 μ Γ 1 + μ Γ 1 + 2 μ ,
A 2 μ = 1 Γ μ + 1 1 0 1 t 2 μ t 3 4 μ d t μ = 127 128 μ Γ 1 + 3 μ Γ 1 + 4 μ 31 128 μ Γ 1 + 2 μ Γ 1 + 3 μ ,
A 3 μ = 1 Γ μ + 1 1 0 1 t μ t μ t 3 4 μ d t μ = 47 128 μ Γ 1 + 3 μ Γ 1 + 4 μ + 35 128 μ Γ 1 + 2 μ Γ 1 + 3 μ + 3 32 μ Γ 1 + μ Γ 1 + 2 μ ,
A 4 μ = 1 Γ μ + 1 1 0 t μ t 3 4 μ d t μ = 3 32 μ Γ 1 + μ Γ 1 + 2 μ + 5 32 μ Γ 1 + 2 μ Γ 1 + 3 μ ,
A 5 μ = 1 Γ μ + 1 1 0 t 2 μ t 3 4 μ d t μ = 47 128 μ Γ 1 + 3 μ Γ 1 + 4 μ 15 128 μ Γ 1 + 2 μ Γ 1 + 3 μ ,
B 1 μ = 1 Γ μ + 1 1 0 1 t μ t + 1 4 μ d t μ = 5 4 μ Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ ,
B 2 μ = 1 Γ μ + 1 1 0 1 t 2 μ t + 1 4 μ d t μ = 5 4 μ Γ 1 + 2 μ Γ 1 + 3 μ Γ 1 + 3 μ Γ 1 + 4 μ ,
B 3 μ = 1 Γ μ + 1 1 0 t μ 1 t μ t + 1 4 μ d t μ = 1 4 μ Γ 1 + μ Γ 1 + 2 μ + 3 4 μ Γ 1 + 2 μ Γ 1 + 3 μ Γ 1 + 3 μ Γ 1 + 4 μ ,
B 4 μ = 1 Γ μ + 1 1 0 t μ t + 1 4 μ d t μ = Γ 1 + 2 μ Γ 1 + 3 μ + 1 4 μ Γ 1 + μ Γ 1 + 2 μ ,
B 5 μ = 1 Γ μ + 1 1 0 t 2 μ 1 4 t μ d t μ = Γ 1 + 3 μ Γ 1 + 4 μ + 1 4 μ Γ 1 + 2 μ Γ 1 + 3 μ ,
C 1 μ = 1 Γ μ + 1 1 0 1 t μ t 1 μ d t μ = Γ 1 + 2 μ Γ 1 + 3 μ ,
C 2 μ = 1 Γ μ + 1 1 0 1 t 2 μ t 1 μ d t μ = Γ 1 + 3 μ Γ 1 + 4 μ ,
C 3 μ = 1 Γ μ + 1 1 0 t μ 1 t μ t 1 μ d t μ = Γ 1 + 2 μ Γ 1 + 3 μ Γ 1 + 3 μ Γ 1 + 4 μ ,
C 4 μ = 1 Γ μ + 1 1 0 t μ t 1 μ d t μ = Γ 1 + μ Γ 1 + 2 μ Γ 1 + 2 μ Γ 1 + 3 μ ,
C 5 μ = 1 Γ μ + 1 1 0 t 2 μ t 1 μ d t μ = Γ 1 + 2 μ Γ 1 + 3 μ Γ 1 + 3 μ Γ 1 + 4 μ .
The proof is completed. □
Corollary 5.
In Theorem 5, using the generalized convexity of ð μ q with respect to the terms ð ( μ ) 2 1 + 2 3 q and ð ( μ ) 1 + 2 2 3 q , we obtain
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ A 1 μ 1 1 q 3 μ A 2 μ + 2 μ A 3 μ 3 μ ð μ 1 q + A 3 μ 3 μ ð μ 2 q 1 q + A 4 μ 1 1 q 3 μ A 3 μ + 2 μ A 5 μ 3 μ ð μ 1 q + A 5 μ 3 μ ð μ 2 q 1 q + B 1 μ 1 1 q 2 μ B 2 μ + B 3 μ 3 μ ð μ 1 q + B 2 μ + 2 μ B 3 μ 3 μ ð μ 2 q 1 q + B 4 μ 1 1 q 2 μ B 3 μ , λ + B 5 μ 3 μ ð μ 1 q + B 3 μ + 2 μ B 5 μ 3 μ ð μ 2 q 1 q + C 1 μ 1 1 q C 2 μ 3 μ ð μ 1 q + 2 μ C 2 μ + 3 μ C 3 μ 3 μ ð μ 2 q 1 q + C 4 μ 1 1 q C 3 μ 3 μ ð μ 1 q + 2 μ C 3 μ + 3 μ C 5 μ 3 μ ð μ 2 q 1 q .
Theorem 6.
Assume that all the assumptions of Lemma 6 are satisfied. If ð μ q is generalized concave, then we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 2 1 μ 3 μ Γ μ + 1 1 q Γ 1 + p μ Γ 1 + p + 1 μ 1 p 5 p + 1 1 4 p + 1 μ p ð μ 1 + 2 2 + 1 + 3 p + 1 4 p + 1 μ p ð μ 5 1 + 2 6 + ð μ 1 + 5 2 6 ,
where p , q > 1 with 1 p + 1 q = 1 .
Proof. 
From Lemma 6, the properties of the modulus, the generalized Hölder inequality, and the generalized concavity of ð μ q , we have
1 4 μ ð 1 + 3 μ ð 1 + 2 2 3 Γ μ + 1 2 1 μ I 2 μ 1 ð ϰ 2 1 μ 9 μ 1 Γ μ + 1 1 0 t 3 4 p μ d t μ 1 p 1 Γ μ + 1 1 0 ð μ 1 t 1 + t 2 1 + 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 1 4 + t p μ d t μ 1 p 1 Γ μ + 1 1 0 ð μ 1 t 2 1 + 2 3 + t 1 + 2 2 3 q d t μ 1 q + 1 Γ μ + 1 1 0 t 1 p μ d t μ 1 p 1 Γ μ + 1 1 0 ð μ 1 t 1 + 2 2 3 + t 2 q d t μ 1 q 2 1 μ 9 μ Γ 1 + p μ Γ 1 + p + 1 μ 3 4 p + 1 + 1 4 p + 1 μ 1 p 2 1 μ 3 μ Γ μ + 1 1 q ð μ 5 1 + 2 6 + Γ 1 + p μ Γ 1 + p + 1 μ 5 p + 1 1 4 p + 1 μ 1 p 2 1 μ 3 μ Γ μ + 1 1 q ð μ 1 + 2 2 + Γ 1 + p μ Γ 1 + p + 1 μ 1 p 2 1 μ 3 μ Γ μ + 1 1 q ð μ 1 + 5 2 6 = 2 1 μ 9 μ 2 1 μ 3 μ Γ μ + 1 1 q Γ 1 + p μ Γ 1 + p + 1 μ 1 p 5 p + 1 1 4 p + 1 μ p ð μ 1 + 2 2 + 3 p + 1 + 1 4 p + 1 μ p ð μ 5 1 + 2 6 + ð μ 1 + 5 2 6 ,
where we have used (11)–(13). The proof is completed. □

4. Application to Quadrature Formula

Let Θ be the partition of the points 1 = ϰ 0 < ϰ 1 < < ϰ n = 2 of the interval 1 , 2 , and consider the quadrature formula
1 Γ μ + 1 2 1 ð ϰ d ϰ μ = Ω ð , Θ + R ð , Θ ,
where
Ω ð , Θ = n 1 i = 0 ϰ i + 1 ϰ i μ Γ μ + 1 1 4 μ ð ϰ i + 3 μ ð ϰ i + 2 ϰ i + 1 3 ,
and R ð , Θ denotes the associated approximation error.
Proposition 1.
Let n N and ð : 1 , 2 R μ be a differentiable function on 1 , 2 with 0 1 < 2 and ð μ C μ 1 , 2 . If ð μ is a generalized convex function, we have
R ð , Θ n 1 i = 0 ϰ i + 1 ϰ i 2 μ 27 μ Γ 1 + μ 103 32 μ Γ 1 + 2 μ Γ 1 + 3 μ + 73 32 μ Γ 1 + μ Γ 1 + 2 μ ð μ ϰ i + 155 32 μ Γ 1 + μ Γ 1 + 2 μ + 5 32 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ ϰ i + 1 .
Proof. 
Applying Corollary 2 on the subintervals ϰ i , ϰ i + 1 i = 0 , 1 , , n 1 of the partition Θ , we obtain
1 4 μ ð ϰ i + 3 μ ð ϰ i + 2 ϰ i + 1 3 Γ μ + 1 ϰ i + 1 ϰ i μ I ϰ i + 1 μ ϰ i ð ϰ ϰ i + 1 ϰ i μ 27 μ 103 32 μ Γ 1 + 2 μ Γ 1 + 3 μ + 73 32 μ Γ 1 + μ Γ 1 + 2 μ ð μ ϰ i + 155 32 μ Γ 1 + μ Γ 1 + 2 μ + 5 32 μ Γ 1 + 2 μ Γ 1 + 3 μ ð μ ϰ i + 1 .
Multiplying both sides of the above inequality by 1 Γ 1 + μ ϰ i + 1 ϰ i μ , and then summing the obtained inequalities for all i = 0 , 1 , , n 1 and using the triangular inequality, we obtain the desired result. □

5. Conclusions

In conclusion, our study introduced a novel local fractional integral identity tied to the Gaussian two-point left Radau rule. Using this identity, we established some new fractal inequalities applicable to functions with generalized convex and concave first-order local fractional derivatives. Our practical applications further demonstrated the effectiveness of these results, highlighting their potential impact and relevance in various contexts.

Author Contributions

Conceptualization: B.B.-M., A.L., M.U.A. and A.B.M.; formal analysis: B.B.-M., A.L. and M.U.A.; investigation: B.B.-M., A.L. and A.B.M.; methodology: M.U.A., A.B.M. and B.M.; project administration: B.B.-M., A.L., N.E.I.K., M.U.A. and A.B.M.; software: N.E.I.K.; supervision: B.M. and S.S.D.; validation: M.U.A., B.M. and S.S.D.; visualization: A.B.M., B.M. and S.S.D.; writing—original draft: B.B.-M., A.L., N.E.I.K. and A.B.M.; writing—review and editing: B.B.-M., A.L., M.U.A., A.B.M. and B.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

This paper is supported by Researchers Supporting Project number (RSP2024R158), King Saud University, Riyadh, Saudi Arabia. The authors are thankful to the editor and anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Niculescu, C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3, 155–167. [Google Scholar] [CrossRef]
  2. Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Mathematics in Science and Engineering, 187; Academic Press, Inc.: Boston, MA, USA, 1992. [Google Scholar]
  3. Meftah, B.; Lakhdari, A.; Benchettah, D.C. Some new Hermite-Hadamard type integral inequalities for twice differentiable s-convex functions. Comput. Math. Model. 2022, 33, 330–353. [Google Scholar] [CrossRef]
  4. Saleh, W.; Lakhdari, A.; Abdeljawad, T.; Meftah, B. On fractional biparameterized Newton-type inequalities. J. Inequal. Appl. 2023, 2023, 122. [Google Scholar] [CrossRef]
  5. Özdemir, M.E.; Dragomir, S.S.; Yıldız, Ç. The Hadamard inequality for convex function via fractional integrals. Acta Math. Sci. Ser. B (Engl. Ed.) 2013, 33, 1293–1299. [Google Scholar] [CrossRef]
  6. Saleh, W.; Meftah, B.; Lakhdari, A. Quantum dual Simpson type inequalities for q-differentiable convex functions. Int. J. Nonlinear Anal. Appl. 2023, 14, 63–76. [Google Scholar]
  7. Zhu, W.S.; Meftah, B.; Xu, H.; Jarad, F.; Lakhdari, A. On parameterized inequalities for fractional multiplicative integrals. Demonstr. Math. 2024, 57, 20230155. [Google Scholar] [CrossRef]
  8. Meftah, B.; Lakhdari, A. Saleh, W. 2-point left Radau-type inequalities via s-convexity. J. Appl. Anal. 2023, 29, 341–346. [Google Scholar] [CrossRef]
  9. Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1. [Google Scholar]
  10. Shang, J.; Wang, Y.; Chen, M.; Dai, J.; Zhou, X.; Kuttner, J.; Hilt, G.; Shao, X.; Gottfried, J.M.; Wu, K. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 2015, 7, 389–393. [Google Scholar] [CrossRef]
  11. Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
  12. Gao, F.; Zhong, W.P.; Shen, X.M. Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Adv. Mater. Res. 2012, 461, 306–310. [Google Scholar]
  13. Yang, Y.J.; Baleanu, D.; Yang, X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 2013, 632309. [Google Scholar] [CrossRef]
  14. Yang, A.M.; Chen, Z.S.; Srivastava, H.M.; Yang, X.J. Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators. Abstr. Appl. Anal. 2013, 2013, 259125. [Google Scholar] [CrossRef]
  15. Yang, X.J. Advanced Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
  16. Xu, H.; Lakhdari, A.; Saleh, W.; Meftah, B. Some New Parametrized Inequalities on Fractal Set. Fractals 2024, 32, 2450063. [Google Scholar] [CrossRef]
  17. Du, T.; Yuan, X. On the parameterized fractal integral inequalities and related applications. Chaos Solitons Fractals 2023, 170, 113375. [Google Scholar] [CrossRef]
  18. Li, H.; Lakhdari, A.; Jarad, F.; Xu, H.; Meftah, B. An expanded analysis of local fractional integral inequalities via generalized (s,P)-convexity. J. Inequal. Appl. 2024, 2024, 78. [Google Scholar] [CrossRef]
  19. Xu, H.; Lakhdari, A.; Jarad, F.; Abdeljawad, T.; Meftah, T. On multiparametrized integral inequalities via generalized α-convexity on fractal set. Math. Meth. Appl. Sci. 2024. [Google Scholar] [CrossRef]
  20. Saleh, W.; Meftah, B.; Lakhdari, A.; Kiliçman, A. Exploring the Companion of Ostrowski’s Inequalities via Local Fractional Integrals. Eur. J. Pure Appl. Math. 2023, 16, 1359–1380. [Google Scholar] [CrossRef]
  21. Lakhdari, A.; Meftah, B.; Saleh, W.; Benchettah, D. Corrected Simpson’s second formula inequalities on fractal set. Fract. Differ. Calc. 2024, 14, 1–19. [Google Scholar] [CrossRef]
  22. Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
  23. Anastassiou, G.; Kashuri, A.; Liko, R. Local fractional integrals involving generalized strongly m-convex mappings. Arab. J. Math. 2019, 8, 95–107. [Google Scholar] [CrossRef]
  24. Lakhdari, A.; Meftah, B.; Saleh, W. On corrected Simpson-type inequalities via local fractional integrals. Georgian Math. J. 2024. [Google Scholar] [CrossRef]
  25. Du, T.; Wang, H.; Khan, M.A.; Zhang, Y. Certain integral inequalities considering generalized m-convexity on fractal sets and their applications. Fractals 2019, 27, 1950117. [Google Scholar] [CrossRef]
  26. Kashuri, A.; Raees, M.; Anwar, M.; Farid, G. On some Ostrowski type inequalities on fractal sets via generalized strongly m-convex mappings. Ann. Oradea Univ.-Math. Fasc. 2020, 27, 81–100. [Google Scholar]
  27. Khan, Z.A.; Rashid, S.; Ashraf, R.; Baleanu, D.; Chu, Y.-M. Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property. Adv. Differ. Equ. 2020, 2020, 657. [Google Scholar] [CrossRef]
  28. Luo, C.; Wang, H.; Du, T. Fejér-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications. Chaos Solitons Fractals 2020, 131, 109547. [Google Scholar] [CrossRef]
  29. Noor, M.A.; Noor, K.I.; Iftikhar, S.; Awan, M.U. Fractal integral inequalities for harmonic convex functions. Appl. Math. Inf. Sci. 2018, 12, 831–839. [Google Scholar] [CrossRef]
  30. Saleh, W.; Lakhdari, A.; Almutairi, O.; Kiliçman, A. Some Remarks on Local Fractional Integral Inequalities Involving Mittag–Leffler Kernel Using Generalized (E,h)-Convexity. Mathematics 2023, 11, 1373. [Google Scholar] [CrossRef]
  31. Sarikaya, M.Z.; Budak, H.; Erden, S. On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 2019, 27, 279–295. [Google Scholar]
  32. Vivas-Cortez, M.; Awan, M.U.; Asif, U.; Javed, M.Z.; Budak, H. Advances in Ostrowski-Mercer Like Inequalities within Fractal Space. Fractal Fract. 2023, 7, 689. [Google Scholar] [CrossRef]
  33. Yu, Y.; Du, T. Certain error bounds on the Bullen type integral inequalities in the framework of fractal spaces. J. Nonlinear Funct. Anal. 2022, 2022, 24. [Google Scholar]
  34. Yu, Y.; Liu, J.; Du, T. Certain error bounds on the parameterized integral inequalities in the sense of fractal sets. Chaos Solitons Fractals 2022, 161, 112328. [Google Scholar] [CrossRef]
  35. Chen, G.-S. Generalizations of Hölder’s and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 2013, 198405. [Google Scholar] [CrossRef]
  36. Yu, S.H.; Mohammed, P.O.; Xu, L.; Du, T. An improvement of the power-mean integral inequality in the frame of fractal space and certain related midpoint-type integral inequalities. Fractals 2022, 30, 2250085. [Google Scholar] [CrossRef]
Figure 1. Graphical representation of Corollary 1.
Figure 1. Graphical representation of Corollary 1.
Axioms 13 00653 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bin-Mohsin, B.; Lakhdari, A.; Karabadji, N.E.I.; Awan, M.U.; Makhlouf, A.B.; Meftah, B.; Dragomir, S.S. An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications. Axioms 2024, 13, 653. https://doi.org/10.3390/axioms13090653

AMA Style

Bin-Mohsin B, Lakhdari A, Karabadji NEI, Awan MU, Makhlouf AB, Meftah B, Dragomir SS. An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications. Axioms. 2024; 13(9):653. https://doi.org/10.3390/axioms13090653

Chicago/Turabian Style

Bin-Mohsin, Bandar, Abdelghani Lakhdari, Nour El Islem Karabadji, Muhammad Uzair Awan, Abdellatif Ben Makhlouf, Badreddine Meftah, and Silvestru Sever Dragomir. 2024. "An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications" Axioms 13, no. 9: 653. https://doi.org/10.3390/axioms13090653

APA Style

Bin-Mohsin, B., Lakhdari, A., Karabadji, N. E. I., Awan, M. U., Makhlouf, A. B., Meftah, B., & Dragomir, S. S. (2024). An Extension of Left Radau Type Inequalities to Fractal Spaces and Applications. Axioms, 13(9), 653. https://doi.org/10.3390/axioms13090653

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop