On the Connection between Nelson’s Stochastic Quantum Mechanics and Nottale’s Theory of Scale Relativity
Abstract
:1. Introduction
2. Nonrelativistic Theory
2.1. Basics of Classical Mechanics
2.2. Schrödinger Equation
2.3. Madelung Transformation
2.4. Nelson’s Stochastic Quantum Mechanics
2.4.1. Nelson’s First Equation
2.4.2. Nelson’s Second Equation
2.4.3. Connection between the Nelson, the Madelung and the Schrödinger Equations
2.4.4. Other Forms of Nelson Equations Assuming Equation (13)
2.5. Nottale’s Theory of Scale Relativity
2.5.1. Complex Lorentz Equation
2.5.2. Derivation of the Schrödinger Equation
2.6. Connection between Nottale and Nelson’s Theories
2.6.1. Complex Action
2.6.2. Real Part of the Complex Lorentz Equation
2.6.3. Imaginary Part of the Complex Lorentz Equation
2.6.4. Connection between Different Equations
3. Relativistic Theory
3.1. Basics of Classical Mechanics
3.2. Klein–Gordon Equation
3.3. De Broglie Transformation
3.4. Nelson’s Stochastic Quantum Mechanics
3.4.1. Nelson’s First Equation
3.4.2. Nelson’s Second Equation
3.4.3. Connection between the Nelson, the De Broglie and the Klein–Gordon Equations
3.4.4. Other Forms of Nelson’s Equations Assuming Equation (135)
3.5. Nottale’s Theory of Scale Relativity
3.5.1. Complex Lorentz Equation
3.5.2. Derivation of the Klein–Gordon Equation
3.6. Connection between Nottale and Nelson’s Theories
3.6.1. Complex Action
3.6.2. Real Part of the Complex Lorentz Equation
3.6.3. Imaginary Part of the Complex Lorentz Equation
3.6.4. Connection between Different Equations
4. Photons
5. General Relativity
6. Generalized Schrödinger and KG Equations
7. Discussion
7.1. Fundamental Differences between Nelson and Nottale Theories
7.2. Problems with Nottale’s Scale Covariance Principle
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Connection between the Operator Prescription and Nottale’s Theory
Appendix A.1. Nonrelativistic Theory
Appendix A.2. Relativistic Theory
Appendix B. Energy in the Nonrelativistic Quantum Theory
Appendix B.1. Schrödinger Energy Functional
Appendix B.2. Madelung Transformation
Appendix B.3. Nelson Theory
Appendix B.4. Nottale Theory
Appendix B.5. Energy of a Quantum Particle
Appendix C. Energy in the Relativistic Quantum Theory
Appendix D. Complex Energy in Nottale’s Nonrelativistic Theory
Appendix D.1. Complex Quantum Potential
Appendix D.2. Complex Energy
Appendix E. Complex Energy in Nottale’s Relativistic Theory
Appendix E.1. Complex Quantum Potential
Appendix E.2. Complex Energy
Appendix F. Basics of Electrodynamics
Appendix F.1. Electromagnetic Lagrangian
Appendix F.2. Maxwell Equations
Appendix F.3. Charge Conservation Equation
Appendix F.4. Lorentz Gauge
Appendix F.5. Wave Equations
Appendix F.6. Electromagnetic Energy
Appendix F.7. Electromagnetic Energy-Momentum Tensor
Appendix F.8. Analogies between the Energy and the Momentum of the Electromagnetic Field and the Energy and the Momentum of a Particle
1 | Since the wave mechanics of Schrödinger [1,2,3,4] is equivalent [10] to the matrix mechanics of Heisenberg–Born–Jordan [11,12,13], we can consider that the Schrödinger equation stems from matrix mechanics. This is how Dirac [14] introduces the Schrödinger equation in his book, starting from quantum commutation relations. However, matrix mechanics and noncommutative algebra are very formal and rely on some axioms. The Schrödinger equation can also be derived from the path integral approach of Feynman [15], which permits one to correlate quantum mechanics with classical mechanics very graphically. In addition to being pedagogical and intuitive, this approach proposes a very interesting interpretation of wave mechanics and makes a direct connection to classical mechanics by showing that the classical trajectory corresponds to the “most probable” path (the one that minimizes the action) and that all the quantum paths are concentrated around the classical path in the limit . In this sense, the path integral formalism provides a derivation of the principle of least action (Maupertuis, Hamilton) as the limit of quantum mechanics. Furthermore, Feynman [15] derived the time-dependent Schrödinger equation from the path integral theory. However, the Feynman approach also relies on axioms and postulates that are not fully justified. |
2 | Schrödinger also believed that the electron was “extended” (instead of singular as believed by de Broglie) and that a wave packet represents its actual shape. He wrote [16]: “material points consist of, or are nothing but, wave-systems… the charge of the electron is not concentrated in a point, but is spread out through the whole space, proportional to the quantity ”. However, he was bothered by the fact that the wave packet spreads out in time, as if the electron was getting bigger and bigger. |
3 | Another concern of Einstein regarding quantum mechanics was the problem of nonlocality [22]. |
4 | According to Pais [23], Einstein demanded that the theory be strictly causal, that it shall unify gravitation and electromagnetism, that the particles of physics shall emerge as special solutions of the general field equations, and that the quantum postulates shall be a consequence of the general field equations. He believed that by dealing with microscopic phenomena, the results of quantum calculations would come out by themselves. |
5 | Prior to his work, several authors proposed an interpretations of the Schrödinger equation in terms of stochastic processes. Schrödinger [44], Fürth [45], Fényes [46], Weizel [47], Bohm and Vigier [48], Kershaw [49] and Comisar [50] tried to describe the motion of quantum particles in terms of a Markov process by analogy with Brownian motion. They pointed out the formal analogy between the Schrödinger equation and the Fokker–Planck equation, and introduced an imaginary diffusion coefficient (this formula first appeared in the paper of Fürth [45]). In the work of Weizel [47], the random aspects of the motion of a quantum particle are due to the interaction with hypothetical particles that he called zerons. On the other hand, Bohm and Vigier [48] introduced the notion of random fluctuations arising from the interaction with a sub-quantum medium. However, despite some resemblances between quantum mechanical motion and diffusion phenomena as the result of the formal similarity between the Schrödinger equation and the diffusion equation, Takabayasi [37,38] emphasized that the nature of the stochastic process in the two cases is very different. In the quantum theory, the trajectories may have very complicated fluctuations, but these fluctuations are not at random, since, for each individual trajectory, they are completely determined by the density appearing in the quantum potential. In contrast, in Brownian theory, the particle experiences a fluctuating force that is uncorrelated at every successive time and independent of the probability distribution . |
6 | The idea of Nottale’s theory of scale relativity is that the trajectories of the particles are intrinsically nondifferentiable. This nondifferentiability manifests itself at small scales (leading to quantum mechanics) but becomes imperceptible at large scales (leading to classical mechanics). This corresponds to the quantum–classical transition. The principle of scale covariance states that the equations of physics properly written should have the same form in the two regimes. |
7 | Nonlinear Schrödinger equations and nonlinear KG equations, possibly coupled to the Poisson or Einstein equations with a renormalized gravitational constant, have also been used to describe elementary particles (see the introduction of [60] for details and references). |
8 | Nottale [55] did not consider the electromagnetic case in the nonrelativistic theory. He only introduced the electromagnetic field in the relativistic formalism. |
9 | The details of the calculations can be found in, e.g., Appendix E of [9] (this amounts to following the steps of Section 2.3 of the present paper with ). These equations can also be directly obtained from the least action principle, as explained by Landau and Lifshitz [77]. |
10 | This is sometimes called the correspondence principle. |
11 | |
12 | Actually, the Madelung hydrodynamic equations are not fully equivalent to the Schrödinger equation [78,79]. To achieve perfect equivalence, we must assume that is equal to a gradient . Furthermore, we must add by hand a quantization condition , where n is an integer, as in the old Bohr–Sommerfeld quantum theory. This ensures that the wave function is single-valued ( with ). Using the Stokes theorem, we obtain . In the nonelectromagnetic case, the vorticity vanishes everywhere except on certain singular points, where it has -type singularities. These arguments led Onsager [80] and Feynman [81,82] to conjecture that superfluids can sustain singular point vortices with circulation quantized in units of . These types of arguments (including the electromagnetic field) were also developed by Dirac [83] in his theory of monopoles. |
13 | More generally, the definition of applies to an arbitrary function . |
14 | This extra term can be expressed in terms of the current of charge by using the Maxwell Equation (A72). |
15 | |
16 | This is essentially how Schrödinger introduced the wave function in his first communication [1] on quantum mechanics, although he thought at that time that the wavefuction was real (he wrote or ). This transformation may have been inspired by the analogy between mechanics and optics developed by Hamilton, Jacobi and de Broglie (see Section 4) that Schrödinger discussed in his second communication [2] (see also [16]). The relation between the wavefunction and the action in quantum mechanics is similar to the relation between the wave and the eikonal (phase) in optics with the correspondence (see Note 34). |
17 | The usual Cole–Hopf transformation is used in fluid mechanics to transform the viscous Burgers equation (pressureless Navier–Stokes equation) into the diffusion equation. Similarly, the complex Cole–Hopf transformation allows us to transform the complex viscous Burgers equation (scale covariant equation of dynamics) into the Schrödinger equation, which is similar to a complex diffusion equation (see Appendix A.2 of [73]). |
18 | This may be an advantage of Nottale’s approach, because the validity of these Fokker–Planck equations has been criticized (see Section 7.1). |
19 | In this paper, we only write the relativistic equations in quadrivectorial form. Their component form is given in our companion paper [9]. |
20 | The details of the calculations can be found in, e.g., Appendix D of [9] (this amounts to following the steps of Section 3.3 of the present paper with ). These equations can also be directly obtained from the least action principle, as explained by Landau and Lifshitz [77]. |
21 | |
22 | |
23 | As in Note 12, in order to achieve perfect equivalence, we must impose the Bohr–Sommerfeld quantization condition with Using the Stokes theorem, we obtain [90]. |
24 | |
25 | |
26 | Our approach justifies the scale covariant equation of Nottale [55], which was introduced in an ad hoc manner in the electromagnetic case. |
27 | This extra term can be expressed in terms of the quadricurrent of charge by using the Maxwell Equation (A70). |
28 | |
29 | See Note 18 above. |
30 | In the 17th and 18th centuries, several natural philosophers studied the phenomenon of refraction and attempted to derive the Snell–Descartes law from a variational principle [92]. The principle of minimal action was outlined by Fermat (1662), who looked for the “fastest” path, and by Leibniz (1646–1716), who looked for the “easiest” path. It was given a more general form by Maupertuis (1744 and 1746), who elevated the principle of minimal action to the status of a fundamental law of nature. He was convinced that he had discovered a “metaphysical law” established by God: “Nature, in the production of its effects, always acts by the simplest means”. He thus argued that his principle of minimal action could cover more general cases than light. The principle introduced by Maupertuis was established in a rigorous way by Euler (1707–1783) and Lagrange (1736–1813). The correct statement of this principle and its precise relationship to geometric optics was established by Hamilton (1805–1865) a century later through the important principle that bears his name. |
31 | For a free particle, using and , Maupertuis’ action can be rewritten as , where we recognize the kinetic energy (without the factor ). This is twice the Lagrangian of a free particle ( with ). |
32 | |
33 | We treat the wave function here as a complex scalar field. As a result, the particle number is conserved [this is ascertained by the equation of continuity (237)]. In wave optics, the wave function is usually real and the particle (photon) number is not conserved. |
34 | Fundamentally, the relations and can be understood by locally expanding the phase in Taylor series, writing , and comparing this expression with the phase of a plane wave . Using the de Broglie relations and , we obtain the relations and of the Hamilton-Jacobi theory with . The relation between the wave and the eikonal (phase) in optics then translates into the relation between the wavefunction and the action in quantum (wave) mechanics. |
35 | In his first papers, Nottale considered his fractal spacetime approach as a new formulation of Nelson’s stochastic quantum mechanics. However, he then realized that most of the equations and the hypothesis of stochastic mechanics were unnecessary in the scale relativity theory, and that the interpretation, including that of the common fluctuation Equations (35) and (36), was very different (we refer to [55] for a more thorough discussion of these differences). |
36 | In this paper (see also [9]), following Nottale [55], we have derived the Schrödinger equation from the complex Newton and Hamilton-Jacobi equations. Conversely, we can directly derive the complex Newton and Hamilton-Jacobi equations from the Schrödinger equation. This is the presentation that we have followed in [8]. This reversed presentation is interesting in its own right and shows the fundamental importance of these complex equations. |
37 | In the scale relativity approach, the elementary description is made in terms of a twin stochastic process, but it is not associated with a classical diffusion interpretation, since it is understood as a direct manifestation of the nondifferentiable geometry of spacetime [55]. |
38 | Nottale [55] proposes another solution, based on the introduction of more general time derivative operators, to cure this problem, but this solution leads to a more complicated formalism that “spoils” the original simplicity of the covariance principle. |
39 | |
40 | As detailed in the introduction, the Schrödinger equation was originally introduced by other arguments (see [9] for a precise historical account). |
41 | |
42 | We missed this early literature in our review discussion of Ref. [60]. |
References
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 384, 361. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 384, 489. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 385, 437. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 386, 109. [Google Scholar] [CrossRef]
- Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 1926, 37, 895. [Google Scholar] [CrossRef]
- Gordon, W. Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Phys. 1926, 40, 117. [Google Scholar] [CrossRef]
- Klein, O. Elektrodynamik und Wellenmechanik vom Standpunkt des Korrespondenzprinzips. Z. Phys. 1927, 41, 407. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Matos, T. Covariant theory of Bose-Einstein condensates in curved spacetimes with electromagnetic interactions: The hydrodynamic approach. Eur. Phys. J. Plus 2017, 132, 30. [Google Scholar] [CrossRef]
- Chavanis, P.H. Derivation of a Generalized Klein-Gordon Equation from the Theory of Scale Relativity. 2024; in preparation. [Google Scholar]
- Schrödinger, E. Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinem. Ann. Phys. 1926, 384, 734. [Google Scholar] [CrossRef]
- Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 1925, 33, 879. [Google Scholar] [CrossRef]
- Born, M.; Jordan, P. Zur Quantenmechanik. Z. Phys. 1925, 34, 858. [Google Scholar] [CrossRef]
- Born, M.; Heisenberg, W.; Jordan, P. Zur Quantenmechanik. II. Z. Phys. 1926, 35, 557. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Oxford University Press: Oxford, UK, 1958. [Google Scholar]
- Feynman, R.P. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys. 1948, 20, 367. [Google Scholar] [CrossRef]
- Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28, 1049. [Google Scholar] [CrossRef]
- Born, M. Zur Quantenmechanik der Stossvorgänge. Z. Phys. 1926, 37, 863. [Google Scholar] [CrossRef]
- Born, M. Quantenmechanik der Stossvorgänge. Z. Phys. 1926, 38, 803. [Google Scholar] [CrossRef]
- Born, M. Physical Aspects of Quantum Mechanics. Nature 1927, 119, 354. [Google Scholar] [CrossRef]
- Born, M. Das Adiabatenprinzip in der Quantenmechanik. Z. Phys. 1927, 40, 167. [Google Scholar] [CrossRef]
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172. [Google Scholar] [CrossRef]
- Maudlin, T. What Bell did. J. Phys. A Math. Theor. 2014, 47, 424010. [Google Scholar] [CrossRef]
- Pais, A. Einstein and the quantum theory. Rev. Mod. Phys. 1979, 51, 863. [Google Scholar] [CrossRef]
- Wentzel, G. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Phys. 1926, 38, 518. [Google Scholar] [CrossRef]
- Brillouin, L. La mécanique ondulatoire de Schrödinger; une méthode générale de résolution par approximations successives. Compt. Rend. Acad. Sci. Paris 1926, 183, 24. [Google Scholar]
- Kramers, H.A. Wellenmechanik und halbzahlige Quantisierung. Z. Phys. 1926, 39, 828. [Google Scholar] [CrossRef]
- Bohr, N. On the Constitution of Atoms and Molecules. Philos. Mag. 1913, 26, 1. [Google Scholar] [CrossRef]
- Sommerfeld, A. Zur Quantentheorie der Spektrallinien. Ann. Phys. 1916, 51, 1. [Google Scholar] [CrossRef]
- Ehrenfest, P. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 1927, 45, 455. [Google Scholar] [CrossRef]
- Madelung, E. Quantentheorie in hydrodynamischer Form. Z. Phys. 1927, 40, 322. [Google Scholar] [CrossRef]
- de Broglie, L. La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Radium 1927, 8, 225. [Google Scholar] [CrossRef]
- de Broglie, L. Sur le rôle des ondes continues Ψ en Mécanique ondulatoire. Compt. Rend. Acad. Sci. Paris 1927, 185, 380. [Google Scholar]
- de Broglie, L. Corpuscules et ondes Ψ. Compt. Rend. Acad. Sci. Paris 1927, 185, 1118. [Google Scholar]
- London, F. Quantenmechanische Deutung der Theorie von Weyl. Z. Phys. 1927, 42, 375. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180. [Google Scholar] [CrossRef]
- Takabayasi, T. On the Formulation of Quantum Mechanics associated with Classical Pictures. Prog. Theor. Phys. 1952, 8, 143. [Google Scholar] [CrossRef]
- Takabayasi, T. Remarks on the Formulation of Quantum Mechanics with Classical Pictures and on Relations between Linear Scalar Fields and Hydrodynamical Fields. Prog. Theor. Phys. 1953, 9, 187. [Google Scholar] [CrossRef]
- de Broglie, L. Remarques sur la théorie de l’onde pilote. Compt. Rend. Acad. Sci. Paris 1951, 233, 641. [Google Scholar]
- de Broglie, L. Sur la possibilité d’une interprétation causale et objective de la Mécanique ondulatoire. Compt. Rend. Acad. Sci. Paris 1952, 234, 265. [Google Scholar]
- de Broglie, L. Sur l’introduction des idées d’onde-pilote et de double solution dans la théorie de l’électron de Dirac. Compt. Rend. Acad. Sci. Paris 1952, 235, 557. [Google Scholar]
- de Broglie, L. The reinterpretation of wave mechanics. Found. Phys. 1970, 1, 5. [Google Scholar] [CrossRef]
- Nelson, E. Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev. 1966, 150, 1079. [Google Scholar] [CrossRef]
- Schrödinger, E. Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. Henri Poincaré 1932, 4, 269. [Google Scholar]
- Fürth, R. Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik. Z. Phys. 1933, 81, 143. [Google Scholar] [CrossRef]
- Fényes, I. Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik. Z. Phys. 1952, 132, 81. [Google Scholar] [CrossRef]
- Weizel, W. Ableitung der Quantentheorie aus einem klassischen, kausal determinierten Modell. Z. Phys. 1953, 134, 264. [Google Scholar] [CrossRef]
- Bohm, D.; Vigier, J.P. Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations. Phys. Rev. 1954, 96, 208. [Google Scholar] [CrossRef]
- Kershaw, D. Theory of Hidden Variables. Phys. Rev. 1964, 136, 1850. [Google Scholar] [CrossRef]
- Comisar, G.G. Brownian-Motion Model of Nonrelativistic Quantum Mechanics. Phys. Rev. 1965, 138, 1332. [Google Scholar] [CrossRef]
- Lehr, W.J.; Park, J.L. A stochastic derivation of the Klein-Gordon equation. J. Math. Phys. 1977, 18, 1235. [Google Scholar] [CrossRef]
- Guerra, F.; Ruggiero, P. A note on relativistic Markov processes. Lett. Nuovo Cimento 1978, 23, 529. [Google Scholar] [CrossRef]
- Vigier, J.P. Model of quantum statistics in terms of a fluid with irregular stochastic fluctuations propagating at the velocity of light - A derivation of Nelson’s equations. Lett. Nuovo Cimento 1979, 24, 265. [Google Scholar] [CrossRef]
- Cufaro-Petroni, N.; Dewdney, C.; Holland, P.; Kyprianidis, T.; Vigier, J.P. Realistic physical origin of the quantum observable operator algebra in the frame of the causal stochastic interpretation of quantum mechanics: The relativistic spin-zero case. Phys. Rev. D 1985, 32, 1375. [Google Scholar] [CrossRef]
- Nottale, L. Scale Relativity and Fractal Space-Time; Imperial College Press: London, UK, 2011. [Google Scholar]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; MacGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Abbott, L.F.; Wise, M.B. Dimension of a quantum-mechanical path. Am. J. Phys. 1981, 49, 37. [Google Scholar] [CrossRef]
- Chavanis, P.H. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results. Phys. Rev. D 2011, 84, 043531. [Google Scholar] [CrossRef]
- Chavanis, P.H. Phase transitions between dilute and dense axion stars. Phys. Rev. D 2018, 98, 023009. [Google Scholar] [CrossRef]
- Chavanis, P.H. Maximum mass of relativistic self-gravitating Bose-Einstein condensates with repulsive or attractive |φ|4 self-interaction. Phys. Rev. D 2023, 107, 103503. [Google Scholar] [CrossRef]
- Moore, B.; Quinn, T.; Governato, F.; Stadel, J.; Lake, G. Cold collapse and the core catastrophe. Mon. Not. R. Astron. Soc. 1999, 310, 1147. [Google Scholar] [CrossRef]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O. Where Are the Missing Galactic Satellites? Astrophys. J. 1999, 522, 82. [Google Scholar] [CrossRef]
- Hu, W.; Barkana, R.; Gruzinov, A. Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. Phys. Rev. Lett. 2000, 85, 1158. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef]
- Suárez, A.; Robles, V.H.; Matos, T. A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model. Astrophys. Space Sci. Proc. 2014, 38, 107. [Google Scholar]
- Rindler-Daller, T.; Shapiro, P.R. Finding New Signature Effects on Galactic Dynamics to Constrain Bose-Einstein-Condensed Cold Dark Matter. Astrophys. Space Sci. Proc. 2014, 38, 163. [Google Scholar]
- Chavanis, P.H. Self-gravitating Bose-Einstein condensates. In Quantum Aspects of Black Holes; Calmet, X., Ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Marsh, D. Axion cosmology. Phys. Rep. 2016, 643, 1. [Google Scholar] [CrossRef]
- Lee, J.W. Brief History of Ultra-light Scalar Dark Matter Models. EPJ Web Conf. 2018, 168, 06005. [Google Scholar] [CrossRef]
- Niemeyer, J.C. Small-scale structure of fuzzy and axion-like dark matter. Prog. Part. Nucl. Phys. 2020, 113, 103787. [Google Scholar] [CrossRef]
- Ferreira, E. Ultra-light dark matter. Astron. Astrophys. Rev. 2021, 29, 7. [Google Scholar] [CrossRef]
- Hui, L. Wave Dark Matter. Ann. Rev. Astron. Astrophys. 2021, 59, 247. [Google Scholar] [CrossRef]
- Chavanis, P.H. Derivation of a generalized Schrödinger equation from the theory of scale relativity. Eur. Phys. J. Plus 2017, 132, 286. [Google Scholar] [CrossRef]
- Chavanis, P.H. Derivation of a generalized Schrödinger equation for dark matter halos from the theory of scale relativity. Phys. Dark Univ. 2018, 22, 80. [Google Scholar] [CrossRef]
- Cresson, J.; Nottale, L.; Lehner, T. Stochastic modification of Newtonian dynamics and induced potential—Application to spiral galaxies and the dark potential. J. Math. Phys. 2021, 62, 072702. [Google Scholar] [CrossRef]
- Escobar-Aguilar, E.S.; Matos, T.; Jimenez-Aquino, J.I. On the physics of the Gravitational Wave Background. 2024; unpublished. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1951. [Google Scholar]
- Bialynicki-Birula, I.; Bialynicka-Birula, Z. Magnetic Monopoles in the Hydrodynamic Formulation of Quantum Mechanics. Phys. Rev. D 1971, 3, 2410. [Google Scholar] [CrossRef]
- Wallstrom, T.C. Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 1994, 49, 1613. [Google Scholar] [CrossRef] [PubMed]
- Onsager, L. Statistical hydrodynamics. Nuovo Cimento 1949, 6, 279. [Google Scholar] [CrossRef]
- Feynman, R.P. Progress in Low Temperature Physics; North Holland: Amsterdam, The Netherlands, 1955; Volume 1. [Google Scholar]
- Feynman, R.P. Excitations in liquid helium. Physica 1958, 24, 18. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Quantised Singularities in the Electromagnetic Field. Proc. R. Soc. A 1931, 133, 60. [Google Scholar]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik 1905, 17, 549. [Google Scholar] [CrossRef]
- Madelung, E. Eine anschauliche Deutung der Gleichung von Schrödinger. Naturwissenschaften 1926, 14, 1004. [Google Scholar] [CrossRef]
- Hirschfelder, J.O.; Christoph, A.C.; Palke, W.E. Quantum mechanical streamlines. I. Square potential barrier. J. Chem. Phys. 1974, 61, 5435. [Google Scholar] [CrossRef]
- Korsch, H.J.; Möhlenkamp, R. Quantum-mechanical streamlines and classical trajectories in elastic scattering. J. Phys. B 1978, 11, 1941. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Quantum Theory of the Electron. Proc. R. Soc. A 1928, 117, 610. [Google Scholar]
- Pauli, W.; Weisskopf, V. Über die Quantisierung der skalaren relativistischen Wellengleichung. Helv. Phys. Act. 1934, 7, 709. [Google Scholar]
- Bialynicki-Birula, I. Relativistic Quantum Mechanics of Dyons. Exact Solution. Phys. Rev. D 1971, 3, 2413. [Google Scholar] [CrossRef]
- Hakim, R. Relativistic Stochastic Processes. J. Math. Phys. 1968, 9, 1805. [Google Scholar] [CrossRef]
- Hacyan, S. Refraction, the Speed of Light and Minimal Action: From Descartes to Maupertuis through Many More. 2024; unpublished. [Google Scholar]
- de Broglie, L. Recherches sur la théorie des Quantas. Ann. Phys. 1925, 10, 22. [Google Scholar] [CrossRef]
- Planck, M. Ueber das Gesetz der Energieverteilung im Normalspectrum. Ann. Phys. 1901, 4, 553. [Google Scholar] [CrossRef]
- Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 1905, 17, 132. [Google Scholar] [CrossRef]
- Chavanis, P.H. Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos. Eur. Phys. J. Plus 2017, 132, 248. [Google Scholar] [CrossRef]
- Chavanis, P.H. Predictive model of BEC dark matter halos with a solitonic core and an isothermal atmosphere. Phys. Rev. D 2019, 100, 083022. [Google Scholar] [CrossRef]
- Chavanis, P.H. A heuristic wave equation parameterizing BEC dark matter halos with a quantum core and an isothermal atmosphere. Eur. Phys. J. B 2022, 95, 48. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized Equations in Quantum Mechanics and Brownian Theory. Symmetry 2023, 15, 2195. [Google Scholar] [CrossRef]
- Chavanis, P.H. Predictive model of fermionic dark matter halos with a quantum core and an isothermal atmosphere. Phys. Rev. D 2022, 106, 043538. [Google Scholar] [CrossRef]
- Grabert, H.; Hänggi, P.; Talkner, P. Is quantum mechanics equivalent to a classical stochastic process? Phys. Rev. A 1979, 19, 2440. [Google Scholar] [CrossRef]
- Wang, M.S.; Liang, W.-K. Comment on “Repeated measurements in stochastic mechanics”. Phys. Rev. D 1993, 48, 1875. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.W. Random Electrodynamics. Proc. R. Soc. A 1963, 276, 475. [Google Scholar]
- Marshall, T.W. Statistical electrodynamics. Proc. Camb. Philos. Soc. 1965, 61, 537. [Google Scholar] [CrossRef]
- Marshall, T.W. A classical treatment of blackbody radiation. Nuovo Cimento 1965, 38, 206. [Google Scholar] [CrossRef]
- Boyer, T.H. Derivation of the Blackbody Radiation Spectrum without Quantum Assumptions. Phys. Rev. 1969, 182, 1374. [Google Scholar] [CrossRef]
- Puthoff, H.E. Source of vacuum electromagnetic zero-point energy. Phys. Rev. A 1989, 40, 4857. [Google Scholar] [CrossRef]
- de la Peña, L.; Cetto, A.M.; Hernández, A.V. The Emerging Quantum. The Physics Behind Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- de la Peña-Auerbach, L.; Cetto, A.M. Derivation of quantum mechanics from stochastic electrodynamics. J. Math. Phys. 1977, 18, 1612. [Google Scholar] [CrossRef]
- de la Peña-Auerbach, L.; Cetto, A.M. Schrödinger equation derived from stochastic electrodynamics. Phys. Lett. A 1977, 62, 389. [Google Scholar] [CrossRef]
- de la Peña-Auerbach, L.; Cetto, A.M. The quantum harmonic oscillator revisited: A new look from stochastic electrodynamics. J. Math. Phys. 1979, 20, 469. [Google Scholar] [CrossRef]
- de la Peña, L.; Cetto, A.M.; Valdés-Hernández, A. Connecting Two Stochastic Theories That Lead to Quantum Mechanics. Front. Phys. 2020, 8, 162. [Google Scholar] [CrossRef]
- Calogero, F. Cosmic origin of quantization. Phys. Lett. A 1997, 228, 335. [Google Scholar] [CrossRef]
- Einstein, A. Über den Äther. Schweiz. Naturforsch. Gesells. Verh. 1924, 105, 85. [Google Scholar]
- Feynman, R.P.; Moringo, F.B.; Wagner, W.G.; Hatfield, B. Feynman Lectures on Gravitation; Penguin: New York, NY, USA, 1999. [Google Scholar]
- Reynaud, S.; Lamine, B.; Lambrecht, A.; Neto, P.M.; Jaekel, M.T. Decoherence and Gravitational Backgrouds. Int. J. Mod. Phys. A 2002, 17, 1003. [Google Scholar] [CrossRef]
- Eddington, A.S. On the Value of the Cosmical Constant. Proc. R. Soc. A 1931, 133, 605. [Google Scholar]
- Chavanis, P.H. A mass scale law connecting cosmophysics to microphysics. Phys. Dark Univ. 2024, 44, 101420. [Google Scholar] [CrossRef]
- von Weizsäcker, C.F. Zur Theorie der Kernmassen. Z. Phys. 1935, 96, 431. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of Statistical Estimation. Proc. Camb. Philos. Soc. 1925, 22, 700. [Google Scholar] [CrossRef]
- Yukawa, H. On the Interaction of Elementary Particles. I. Proc. Phys. Math. Soc. Jpn. 1935, 17, 48. [Google Scholar]
- Fukuda, I.; Tsutsumi, M. On Coupled Klein-Gordon-Schrödinger Equations, II. J. Math. Anal. Appl. 1978, 66, 358. [Google Scholar] [CrossRef]
- Proca, A. Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium 1936, 7, 347. [Google Scholar] [CrossRef]
- Proca, A. Particules libres photons et particules “charge pure”. J. Phys. Radium 1937, 8, 23. [Google Scholar] [CrossRef]
- Heber, G. Zur Theorie der Elementarteilchen. I. Ann. Phys. 1955, 16, 43. [Google Scholar] [CrossRef]
- Heber, G. Zur Theorie der Elementarteilchen. II. Ann. Phys. 1956, 17, 102. [Google Scholar] [CrossRef]
- Heber, G. Zur Theorie der Elementarteilchen. III. Z. Phys. 1956, 144, 39. [Google Scholar] [CrossRef]
- Meyer, K. Zur Durchführung eines Variationsvefahrens in einer skalaren Feldtheorie. Ann. Phys. 1956, 17, 109. [Google Scholar] [CrossRef]
- Gross, E.P. Particle-like solutions in field theory. Ann. Phys. 1962, 19, 219. [Google Scholar] [CrossRef]
- Nelson, E. Interaction of Nonrelativistic Particles with a Quantized Scalar Field. J. Math. Phys. 1964, 5, 1190. [Google Scholar] [CrossRef]
- Ruffini, R.; Bonazzola, S. Systems of Self-Gravitating Particles in General Relativity and the Concept of an Equation of State. Phys. Rev. 1969, 187, 1767. [Google Scholar] [CrossRef]
- Poynting, J.H. On the Transfer of Energy in the Electromagnetic Field. Philos. Trans. R. Soc. Lond. 1884, 175, 343. [Google Scholar]
- Abraham, M. Theorie der Elektrizitat; Teubner: Leipzig, Germany, 1905. [Google Scholar]
- Lorentz, H.A. The Theory of Electrons; Teubner: Leipzig, Germany, 1909. [Google Scholar]
- Thomson, J.J. On the Electric and Magnetic Effects produced by the Motion of Electrified Bodies. Philos. Mag. 1881, 11, 229. [Google Scholar] [CrossRef]
- Lorentz, H.A. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. R. Neth. Acad. Arts Sci. 1904, 6, 809. [Google Scholar]
- Wien, W. Ueber die Möglichkeit einer elektromagnetischen Begründung der Mechanik. Ann. Physik 1901, 310, 501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavanis, P.-H. On the Connection between Nelson’s Stochastic Quantum Mechanics and Nottale’s Theory of Scale Relativity. Axioms 2024, 13, 606. https://doi.org/10.3390/axioms13090606
Chavanis P-H. On the Connection between Nelson’s Stochastic Quantum Mechanics and Nottale’s Theory of Scale Relativity. Axioms. 2024; 13(9):606. https://doi.org/10.3390/axioms13090606
Chicago/Turabian StyleChavanis, Pierre-Henri. 2024. "On the Connection between Nelson’s Stochastic Quantum Mechanics and Nottale’s Theory of Scale Relativity" Axioms 13, no. 9: 606. https://doi.org/10.3390/axioms13090606
APA StyleChavanis, P. -H. (2024). On the Connection between Nelson’s Stochastic Quantum Mechanics and Nottale’s Theory of Scale Relativity. Axioms, 13(9), 606. https://doi.org/10.3390/axioms13090606