Generalization of Fixed-Point Results in Complex-Valued Bipolar Metric Space with Applications
Abstract
:1. Introduction
2. Preliminaries
- x represents the real part of z;
- y represents the imaginary part of z;
- i is the imaginary unit, defined as the square root of (i.e., ).
- (i)
- and ⇔
- (ii)
- (iii)
3. Complex-Valued Bipolar Metric Space
- (cvb1)
- and ⟺ for
- (cvb2)
- for all
- (cvb3)
4. Main Results
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Antón-Sancho, Á. Fixed points of principal E6-bundles over a compact algebraic curve. Quaest. Math. 2024, 47, 501–513. [Google Scholar] [CrossRef]
- Antón-Sancho, Á. Fixed points of automorphisms of the vector bundle moduli space over a compact Riemann surface. Mediterr. J. Math. 2024, 21, 20. [Google Scholar] [CrossRef]
- Antón-Sancho, Á. Fixed points of involutions of G-Higgs bundle moduli spaces over a compact Riemann surface with classical complex structure group. Front. Math. 2024, 1–15. [Google Scholar] [CrossRef]
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Cal. Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Reich, S. Kannan’s fixed point theorem. Boll. Dell’Unione Mat. Ital. 1971, 4, 1–11. [Google Scholar]
- Fisher, B. Mappings satisfying a rational inequality. Bull. Math. Soc. Sci. Math. Roum. 1980, 24, 247–251. [Google Scholar]
- Khan, M.S. A fixed point theorem for metric spaces. Int. J. Math. 1976, 8, 69–72. [Google Scholar] [CrossRef]
- Jaggi, D. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230. [Google Scholar]
- Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. Num. Funct. Anal. Optimiz. 2011, 32, 243–253. [Google Scholar] [CrossRef]
- Rouzkard, F.; Imdad, M. Some common fixed point theorems on complex valued metric spaces. Comp. Math. Appl. 2012, 64, 1866–1874. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Kumam, P. Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequal. Appl. 2012, 2012, 84. [Google Scholar] [CrossRef]
- Sitthikul, K.; Saejung, S. Some fixed point theorems in complex valued metric spaces. Fixed Point Theory Appl. 2012, 2012, 189. [Google Scholar] [CrossRef]
- Ahmad, H.; Younis, M.; Koksal, M.E.; Lateef, D. Nonunique fixed-point results in a general setting with an application. J. Math. 2024, 1–13. [Google Scholar] [CrossRef]
- Mutlu, A.; Gürdal, U. Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 2016, 9, 5362–5373. [Google Scholar] [CrossRef]
- Paul, J.; Sajid, M.; Chandra, N.; Gairola, U.C. Some common fixed point theorems in bipolar metric spaces and applications. AIMS Math. 2023, 8, 19004–19017. [Google Scholar] [CrossRef]
- Kishore, G.N.V.; Isik, H.; Aydi, H.; Rao, B.S.; Prasad, D.R. On new types of contraction mappings in bipolar metric spaces and applications. J. Linear Topol. Algebra 2020, 9, 253–266. [Google Scholar]
- Mutlu, A.; Ozkan, K.; Gürdal, U. Some common fixed point theorems in bipolar metric spaces. Turk. J. Math. Comput. Sci. 2022, 14, 346–354. [Google Scholar] [CrossRef]
- Rao, B.S.; Kishore, G.N.V.; Kumar, G.K. Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy. Int. J. Math. Technol. 2018, 63, 25–34. [Google Scholar] [CrossRef]
- Younis, M.; Singh, D.; Goyal, A. Solving existence problems via F-Reich contraction. In Integral Methods in Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 451–463. [Google Scholar]
- Siva, G. Complex valued bipolar metric spaces and fixed point theorems. Commun. Nonlinear Anal. 2023, 1, 29–43. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shammaky, A.E.; Ahmad, J. Generalization of Fixed-Point Results in Complex-Valued Bipolar Metric Space with Applications. Axioms 2024, 13, 550. https://doi.org/10.3390/axioms13080550
Shammaky AE, Ahmad J. Generalization of Fixed-Point Results in Complex-Valued Bipolar Metric Space with Applications. Axioms. 2024; 13(8):550. https://doi.org/10.3390/axioms13080550
Chicago/Turabian StyleShammaky, Amnah Essa, and Jamshaid Ahmad. 2024. "Generalization of Fixed-Point Results in Complex-Valued Bipolar Metric Space with Applications" Axioms 13, no. 8: 550. https://doi.org/10.3390/axioms13080550
APA StyleShammaky, A. E., & Ahmad, J. (2024). Generalization of Fixed-Point Results in Complex-Valued Bipolar Metric Space with Applications. Axioms, 13(8), 550. https://doi.org/10.3390/axioms13080550