Some Results on the Free Poisson Distribution
Abstract
:1. Introduction
- (i)
- characterizes μ: if we set
- (ii)
- Consider and . Let be an image of μ created by . Then, ∀p close enough to ,If exists, then
- (iii)
2. A Property of Based on the Fermi Convolution
- (i)
- For such that , the -transform of is
- (ii)
3. A Property of Based on the -Convolution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szpojankowski, K. A constant regression characterization of the Marchenko-Pastur law. Probab. Math. 2016, 36, 137–145. [Google Scholar]
- Fakhfakh, R. A characterization of the Marchenko-Pastur probability measure. Stat. Probab. Lett. 2022, 19, 109660. [Google Scholar] [CrossRef]
- Yascov, P. A short proof of the Marchenko-Pastur theorem. Comptes Rendus Math. 2016, 354, 319–322. [Google Scholar] [CrossRef]
- Bożejko, M.; da Silva, J.L.; Kuna, T.; Lytvynov, E. Approximation of a free Poisson process by systems of freely independent particles. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2018, 21, 1850020. [Google Scholar] [CrossRef]
- Hinz, M.; Mlotkowski, W. Free powers of the free Poisson measure. Colloq. Math. 2011, 123, 285–290. [Google Scholar] [CrossRef]
- Bourguin, S. Poisson convergence on the free Poisson algebra. Bernoulli 2015, 21, 2139–2156. [Google Scholar] [CrossRef]
- Bożejko, M.; Wysoczański, J. Remarks on t-transformations of measures and convolutions. Ann. Inst. Poincar Probab. Statist. 2001, 37, 737–761. [Google Scholar] [CrossRef]
- Bożejko, M.; Wysoczański, J. New Examples of Onvolutions and Non-Commutative Central Limit Theorems. Banach Cent. Publ. 1998, 43, 95–103. [Google Scholar] [CrossRef]
- Oravecz, F. Fermi convolution. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2002, 2, 235–242. [Google Scholar] [CrossRef]
- Bryc, W. Free exponential families as kernel families. Demonstr. Math. 2009, 42, 657–672. [Google Scholar] [CrossRef]
- Bryc, W.; Hassairi, A. One-sided Cauchy-Stieltjes kernel families. J. Theor. Probab. 2011, 24, 577–594. [Google Scholar] [CrossRef]
- Krystek, A.D.; Yoshida, H. Generalized t-transformations of probability measures and deformed convolution. Probab. Math. Stat. 2004, 24, 97–119. [Google Scholar]
- Fakhfakh, R. Characterization of quadratic Cauchy-Stieltjes Kernel families based on the orthogonality of polynomials. J. Math. Anal. Appl. 2018, 459, 577–589. [Google Scholar] [CrossRef]
- Fakhfakh, R. Fermi convolution and variance function. Proc. Rom. Acad. Ser. A 2023, 24, 3–10. [Google Scholar] [CrossRef]
- Friedman, D. The functional equation f (x + y) = g(x) + h(y). Am. Math. Mon. 1962, 69, 769–772. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanzi, A.R.A.; Alqasem, O.A.; Elwahab, M.E.A.; Fakhfakh, R. Some Results on the Free Poisson Distribution. Axioms 2024, 13, 496. https://doi.org/10.3390/axioms13080496
Alanzi ARA, Alqasem OA, Elwahab MEA, Fakhfakh R. Some Results on the Free Poisson Distribution. Axioms. 2024; 13(8):496. https://doi.org/10.3390/axioms13080496
Chicago/Turabian StyleAlanzi, Ayed. R. A., Ohud A. Alqasem, Maysaa Elmahi Abd Elwahab, and Raouf Fakhfakh. 2024. "Some Results on the Free Poisson Distribution" Axioms 13, no. 8: 496. https://doi.org/10.3390/axioms13080496
APA StyleAlanzi, A. R. A., Alqasem, O. A., Elwahab, M. E. A., & Fakhfakh, R. (2024). Some Results on the Free Poisson Distribution. Axioms, 13(8), 496. https://doi.org/10.3390/axioms13080496