Stability Results for Some Classes of Cubic Functional Equations
Abstract
:1. Introduction
2. Preliminaries
3. Stability of (1)
4. Stability of the Jensen Cubic Functional Equation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aczél, J. (Ed.) Lectures on Functional Equations and Their Applications; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Nassar, H.; El-Hady, E.S. Closed-form solution of a LAN gateway queueing model. In Contributions in Mathematics and Engineering: In Honor of Constantin Carathéodory; Springer: Berlin/Heidelberg, Germany, 2016; pp. 393–427. [Google Scholar]
- Brzdęk, J.; El-hady, E.S.; Forg-Rob, W.; Lesniak, Z. A note on solutions of a functional equation arising in a queuing model for a LAN gateway. Aequationes Math. 2016, 90, 671–681. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Basel, Switzerland, 1998. [Google Scholar]
- Hayes, W.; Jackson, K.R. A survey of shadowing methods for numerical solutions of ordinary differential equations. Appl. Numer. Math. 2005, 53, 299–321. [Google Scholar] [CrossRef]
- Saadati, R.; Vaezpour, S.M.; Park, C. The stability of the cubic functional equation in various spaces. Math. Commun. 2011, 16, 131–145. [Google Scholar]
- Nuino, A. On the Brzdek’s fixed point approach to stability of a Drygas functional equation in 2-Banach spaces. J. Fixed Point Theory Appl. 2021, 2, 18. [Google Scholar] [CrossRef]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators, Mathematical Analysis and Its Applications, 1st ed.; Academic Press: Oxford, UK, 2018. [Google Scholar]
- Dehghanian, M.; Sayyari, Y. The application of Brzdȩk’s fixed point theorem in the stability problem of the Drygas functional equation. Turk. J. Math. 2023, 47, 1778–1790. [Google Scholar] [CrossRef]
- Yang, D. Remarks on the stability of Drygas equation and the Pexider-quadratic equation. Aequationes Math. 2004, 68, 108–116. [Google Scholar] [CrossRef]
- Govindan, V.; Park, C.; Pinelas, S.; Rassias, T.M. Hyers-Ulam stability of an additive-quadratic functional equation. Cubo 2020, 22, 233–255. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Leśniak, Z.; Malejki, R. On the stability of a generalized Frechet functional equation with respect to hyperplanes in the parameter space. Symmetry 2021, 13, 384. [Google Scholar] [CrossRef]
- Alizadeh, Z.; Ghazanfari, A.G. On the stability of a radical cubic functional equation in quasi-β-spaces. J. Fixed Point Theory Appl. 2016, 18, 843–853. [Google Scholar] [CrossRef]
- Kim, S.S.; Cho, Y.J.; Eshaghi Gordji, M. On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations. J. Inequal. Appl. 2012, 2012, 186. [Google Scholar] [CrossRef]
- Khodaei, H.; Eshaghi Gordji, M.; Kim, S.S.; Cho, Y.J. Approximation of radical functional equations related to quadratic and quartic mappings. J. Math. Anal. Appl. 2012, 395, 284–297. [Google Scholar] [CrossRef]
- Cholewa, P.W. Remarks on the Stability of Functional Equations. Aequat. Math. 1984, 27, 76–86. [Google Scholar] [CrossRef]
- Czerwik, S. On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hambg. 1992, 62, 59–64. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the quadratic functional equation and its applications. Stud. Univ. Babes-Bolyai Math. 1998, 43, 89–124. [Google Scholar]
- Paokanta, S.; Dehghanian, M.; Park, C.; Sayyari, Y. A system of additive functional equations in complex Banach algebras. Demonstr. Math. 2023, 56, 20220165. [Google Scholar] [CrossRef]
- Sayyari, Y.; Dehghanian, M.; Park, C. A system of biadditive functional equations in Banach algebras. Appl. Math. Sci. Eng. 2023, 31, 2176851. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Rahman, M.M. On the Stability of Noor Iterative Scheme for Zamfirescu Multi-valued Contraction Mapping in Metric Spaces. J. Fixed Point Theory Appl. 2018, 13, 167–197. [Google Scholar] [CrossRef]
- Cho, Y.S.; Jun, K.W. The stability of functional inequalities with additive mappings. Bull. Korean Math. Soc. 2009, 46, 11–23. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdȩk, J.; El-Hady, E.S.; Leśniak, Z. On Ulam stability of functional equations in 2-normed spaces-A survey. Symmetry 2021, 13, 2200. [Google Scholar] [CrossRef]
- Isac, G.; Rassias, T.M. Stability of ψ-additive mappings: Applications to non-linear analysis. Int. J. Math. Math. Sci. 1996, 19, 219–228. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Chudziak, J.; Pales, Z.s. A fixed point approach to stability of functional equations. Nonlinear Anal. 2011, 74, 6728–6732. [Google Scholar] [CrossRef]
- Rassias, J.M. Solution of the Ulam stability problem for cubic mappings. Glas. Mat. Ser. III 2001, 36, 63–72. [Google Scholar]
- Jung, K.W.; Kim, H.M. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 2002, 274, 267–278. [Google Scholar]
- Jun, K.; Lee, Y. On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality. Math. Inequal. Appl. 2001, 4, 93–118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-hady, E.-s.; Sayyari, Y.; Dehghanian, M.; Alruwaily, Y. Stability Results for Some Classes of Cubic Functional Equations. Axioms 2024, 13, 480. https://doi.org/10.3390/axioms13070480
El-hady E-s, Sayyari Y, Dehghanian M, Alruwaily Y. Stability Results for Some Classes of Cubic Functional Equations. Axioms. 2024; 13(7):480. https://doi.org/10.3390/axioms13070480
Chicago/Turabian StyleEl-hady, El-sayed, Yamin Sayyari, Mehdi Dehghanian, and Ymnah Alruwaily. 2024. "Stability Results for Some Classes of Cubic Functional Equations" Axioms 13, no. 7: 480. https://doi.org/10.3390/axioms13070480
APA StyleEl-hady, E. -s., Sayyari, Y., Dehghanian, M., & Alruwaily, Y. (2024). Stability Results for Some Classes of Cubic Functional Equations. Axioms, 13(7), 480. https://doi.org/10.3390/axioms13070480