On the Potential Vector Fields of Soliton-Type Equations
Abstract
:1. Introduction
2. Preliminaries
3. On the Potential Vector Fields of Some Soliton-Type Equations
4. Ricci Vector Fields
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yano, K. On torse-forming direction in a Riemannian space. Proc. Imp. Acad. Tokyo 1944, 20, 340–346. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Verstraelen, L. A link between torse-forming vector fields and rotational hypersurfaces. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750177. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Deshmukh, S. Some results about concircular vector fields on Riemannian manifolds. Filomat 2020, 34, 835–842. [Google Scholar] [CrossRef]
- Ishan, A.; Deshmukh, S. Torse-forming vector fields on m-spheres. AIMS Math. 2022, 7, 3056–3066. [Google Scholar] [CrossRef]
- Alohali, H.; Deshmukh, S. Ricci vector fields. Mathematics 2023, 11, 4622. [Google Scholar] [CrossRef]
- Mihai, A.; Mihai, I. Torse-forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications. J. Geom. Phys. 2013, 73, 200–208. [Google Scholar] [CrossRef]
- Blaga, A.M.; Özgür, C. On torse-forming-like vector fields. submitted.
- Blaga, A.M. On trivial gradient hyperbolic Ricci and gradient hyperbolic Yamabe solitons. J. Geom. 2024, 115, 26. [Google Scholar] [CrossRef]
- Crasmareanu, M. A new approach to gradient Ricci solitons and generalizations. Filomat 2018, 32, 3337–3346. [Google Scholar] [CrossRef]
- Turki, N.B.; Blaga, A.M.; Deshmukh, S. Soliton-type equations on a Riemannian manifold. Mathematics 2022, 10, 633. [Google Scholar] [CrossRef]
- Miao, P.; Tam, L.-F. On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. Partial Differ. Equ. 2009, 36, 14–171. [Google Scholar] [CrossRef]
- Fischer, A.E.; Marsden, J.E. Manifolds of Riemannian metrics with prescribed scalar curvature. Bull. Am. Math. Soc. 1974, 80, 47–484. [Google Scholar] [CrossRef]
- Blaga, A.M. Remarks on almost η-solitons. Matematički Vesnik 2019, 71, 244–249. [Google Scholar]
- Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker Inc.: New York, NY, USA, 1970. [Google Scholar]
- Hinterleitner, I.; Kiosak, V.A. ϕ(Ric)-vector fields in Riemannian spaces. Arch. Math. 2008, 44, 385–390. Available online: http://dml.cz/dmlcz/127124 (accessed on 1 May 2024).
- Oubina, J.A. New classes of almost contact metric structures. Publ. Math. Debrecen. 1985, 32, 187–193. [Google Scholar] [CrossRef]
- Blaga, A.M.; Laţcu, D.R. Remarks on Einstein solitons with certain types of potential vector field. Int. Electron. J. Geom. 2021, 14, 100–105. [Google Scholar] [CrossRef]
- Amari, S.I. Differential-Geometrical Methods in Statistics; Lecture Notes in Statistics 28; Springer: New York, NY, USA, 1985. [Google Scholar]
- Kurose, T. Statistical Manifolds Admitting Torsion. Geometry and Something; Fukuoka Univ.: Fukuoka-shi, Japan, 2007. (In Japanese) [Google Scholar]
- Rachunek, L.; Mikes, J. On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palacki Olomuc Fac. Rerum Nat. Math. 2005, 44, 151–160. [Google Scholar]
- Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 1962, 14, 333–340. [Google Scholar] [CrossRef]
- Blaga, A.M.; Özgür, C. Killing and 2-Killing vector fields on doubly warped products. Mathematics 2023, 11, 4983. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaga, A.M. On the Potential Vector Fields of Soliton-Type Equations. Axioms 2024, 13, 476. https://doi.org/10.3390/axioms13070476
Blaga AM. On the Potential Vector Fields of Soliton-Type Equations. Axioms. 2024; 13(7):476. https://doi.org/10.3390/axioms13070476
Chicago/Turabian StyleBlaga, Adara M. 2024. "On the Potential Vector Fields of Soliton-Type Equations" Axioms 13, no. 7: 476. https://doi.org/10.3390/axioms13070476
APA StyleBlaga, A. M. (2024). On the Potential Vector Fields of Soliton-Type Equations. Axioms, 13(7), 476. https://doi.org/10.3390/axioms13070476