Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents
Abstract
1. Introduction
2. Proof of Theorems
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dautray, R.; Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology. In Physical Origins and Classical Methods; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Joseph, D.D.; Lundgren, T.S. Quasilinear Dirichlet problem driven by positive sources. Arch. Ration. Mech. Anal. 1973, 49, 241–269. [Google Scholar] [CrossRef]
- Brezis, H.; Lieb, E. A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 1983, 88, 486–490. [Google Scholar] [CrossRef]
- Coleman, S.; Glazer, V.; Martin, A. Action minima among solutions to a class of Euclidean scalar field equations. Commun. Math. Phys. 1978, 58, 211–221. [Google Scholar] [CrossRef]
- Strauss, W. Existence of solitary waves in higher dimensions. Commun. Math. Phys. 1977, 55, 149–162. [Google Scholar] [CrossRef]
- Lions, P.L. Minimization problems in L1 (). J. Funct. Anal. 1981, 41, 236–275. [Google Scholar] [CrossRef]
- Kassymov, A.; Suragan, D. Multiplicity of positive solutions for a nonlinear equation with a Hardy potential on the Heisenberg group. Bull. Des Sci. Mathatiques 2020, 165, 102916. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.Q. Leray–Lions type p(x)-biharmonic equations involving Hardy potentials. Appl. Math. Lett. 2024, 149, 108907. [Google Scholar] [CrossRef]
- Fărcăşeanu, M. Isolated singularities for semilinear elliptic systems with Hardy potential. J. Math. Anal. Appl. 2023, 527, 127415. [Google Scholar] [CrossRef]
- Djellab, N.; Boureghda, A. A moving boundary model for oxygen diffusion in a sick cell. Comput. Methods Biomech. Biomed. 2022, 25, 1402–1408. [Google Scholar] [CrossRef]
- Boureghda, A.; Djellab, N. Du Fort-Frankel Finite Difference Scheme for Solving of Oxygen Diffusion Problem inside One Cell. J. Comput. Theor. Transp. 2023, 52, 363–373. [Google Scholar] [CrossRef]
- Lions, P.L. On the existence of positive solutions of semilinear elliptic equations. Slam Rev. 1982, 24, 441–467. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Brezis, H.; Cerami, G. Combined effects of concave and convex nonlinearities in some elliptic problem. J. Funct. Anal. 1994, 122, 519–543. [Google Scholar] [CrossRef]
- Rabinowitz, P.H. Minimax Methods in Critical Point Theory with Applictions to Differential Equations. In CBMS Regional Conference Series in Mathematics; AMS: Providence, RI, USA, 1986; Volume 65. [Google Scholar]
- Struwe, M. Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef]
- Brezis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 1983, 36, 437–477. [Google Scholar] [CrossRef]
- Ekeland, I.; Ghoussoub, N. Selected new aspects of the calculus of variations in the large. Bull. Am. Math. Soc. 2002, 39, 207–265. [Google Scholar] [CrossRef]
- Palais, R.S.; Smale, S. A generalized Morse theory. Bull. Am. Math. Soc. 1964, 70, 165–172. [Google Scholar] [CrossRef]
- Azorero, J.P.G.; Alonso, I.P. Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 1998, 144, 441–476. [Google Scholar] [CrossRef]
- Cao, D.M.; Peng, S.J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differ. Equ. 2003, 193, 424–434. [Google Scholar] [CrossRef]
- Azorero, J.P.G.; Alonso, I.P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 1991, 323, 877–895. [Google Scholar] [CrossRef]
- Padilla, P. The effect of the shape of the domain on the existence of solutions of an equation involving the critical Sobolev exponent. J. Differ. Equ. 1996, 124, 449–471. [Google Scholar] [CrossRef]
- Ferrero, A.; Gazzola, F. Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ. 2001, 177, 494–522. [Google Scholar] [CrossRef]
- Cao, D.M.; Han, P.G. Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 2004, 205, 521–537. [Google Scholar] [CrossRef]
- Jannelli, E. The role played by space dimension in elliptic critical problems. J. Differ. Equ. 1999, 156, 407–426. [Google Scholar] [CrossRef]
- Kang, D.S.; Deng, Y.B. Existence of solution for a singular critical elliptic equation. J. Math. Anal. Appl. 2003, 284, 724–732. [Google Scholar] [CrossRef]
- Kang, D.S.; Peng, S.J. Positive solutions for singular critical elliptic problems. Appl. Math. Lett. 2004, 17, 411–416. [Google Scholar] [CrossRef]
- Wang, M.C.; Zhang, Q. Existence of solutions for singular critical semilinear elliptic equation. Appl. Math. Lett. 2019, 94, 217–223. [Google Scholar] [CrossRef]
- Ding, L.; Tang, C.L. Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents. Appl. Math. Lett. 2007, 20, 1175–1183. [Google Scholar] [CrossRef]
- Ghoussoub, N.; Yuan, C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 2000, 352, 5703–5743. [Google Scholar] [CrossRef]
- Chou, K.S.; Chu, C.W. On the best constant for a weighted Sobolev-Hardy inequality. J. Lond. Math. Soc. 1993, 48, 137–151. [Google Scholar] [CrossRef]
- Wang, L.L.; Fan, Y.H. Existence and nonexistence of positive solutions for semilinear elliptic equations involving Hardy-Sobolev critical exponents. Mathematics 2024, 12, 1616. [Google Scholar] [CrossRef]
- Ding, L.; Tang, C.L. Existence and multiplicity of positive solutions for a class of semilinear elliptic equations involving Hardy terms and Hardy-Sobolev critical exponents. J. Math. Anal. Appl. 2008, 339, 1073–1083. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Sun, W.; Wang, L. Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Axioms 2024, 13, 450. https://doi.org/10.3390/axioms13070450
Fan Y, Sun W, Wang L. Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Axioms. 2024; 13(7):450. https://doi.org/10.3390/axioms13070450
Chicago/Turabian StyleFan, Yonghong, Wenheng Sun, and Linlin Wang. 2024. "Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents" Axioms 13, no. 7: 450. https://doi.org/10.3390/axioms13070450
APA StyleFan, Y., Sun, W., & Wang, L. (2024). Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Axioms, 13(7), 450. https://doi.org/10.3390/axioms13070450