On the Kantorovich Theory for Nonsingular and Singular Equations
Abstract
:1. Introduction
2. Preliminaries
3. Semi-Local Convergence
- There exists parameters a point having outer inverse such that .
- There exists function which is continuous and nondecreasing such that the equation admits a smallest positive solution . Take .
- There exists functions , . Define the real sequence for asThe sequence is proven to be majorizing for (see Theorem 1). However, some conditions for this sequence are needed first.
- There exists such that for all .By this condition and (12) that and there exists such that .The functions and connect to the operators on the method (8).
- for all . Set , where . We shall also denote by the closure of .
- and for all
- The equation has a smallest solution in , where . Denote such solution by and
- .
- (i)
- The results of the Theorem 1 specialize for the Newton method with OI defined by , for solving Equation (5). Simply, take and .
- (ii)
- Under the conditions , further suppose that the operator sends to provided that for , the inverse of
- (iii)
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamamoto, T. A convergence theorem for Newton-like algorithms in Banach spaces. Numer. Math. 1987, 51, 545–557. [Google Scholar] [CrossRef]
- Adly, S.; Ngai, H.V.; Nguyen, V.V. Newton’s method for solving generalized equations: Kantorovich’s and Smale’s approaches. J. Math. Anal. Appl. 2016, 439, 396–418. [Google Scholar] [CrossRef]
- Artacho, F.J.A.; Dontchev, M.; Gaydu, A.L.; Geoffroy, M.H.; Veliov, V.M. Metric regularity of Newton’s iteration. SIAM J. Control Optim. 2011, 49, 339–362. [Google Scholar] [CrossRef]
- Argyros, I.K. The Theory and Applications of Iteration Methods with Applications, Engineering Series, 2nd ed.; CRC Press, Taylor and Francis Publ.: Boca Raton, FL, USA, 2022. [Google Scholar]
- Ben-Israel, A. On applications of generalized inverses in nonlinear analysis. In Theory and Application of Generalized Inverses of Matrices; Boullion, T.L., Odell, P.L., Eds.; Mathematics Series 4; Texas Technological College: Lubbock, TX, USA, 1968; pp. 183–202. [Google Scholar]
- Cibulka, R.; Dontchev, A.; Preininger, J.; Roubal, T.; Veliov, V. Kantorovich-Type Theorems for Generalized Equations, Research Report 2015–16; Vienna University of Technology: Vienna, Austria, 2015. [Google Scholar]
- Dokov, S.P.; Dontchev, A.L. Robinson’s Strong Regularity Implies Robust Local Convergence of Newton’s Method. In Optimal Control (Gainesville, FL, 1997), Applied Optimization; Kluwer: Dordrecht, The Netherlands, 1998; Volume 15, pp. 116–129. [Google Scholar]
- Deuflhard, P. Newton Algorithms for Nonlinear Problems: Affine Invariance and Adaptive Algorithms; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2004; Volume 35. [Google Scholar]
- Kelley, C.T. Solving Nonlinear Equations with Iterative Methods, Solvers and Examples in Julia, Fundamentals of Algorithms; SIAM: Philadelphia, PA, USA, 2023. [Google Scholar]
- Li, C.; Ng, K.F. Convergence analysis of the Gauss–Newton method for convex inclusion and convex-composite optimization problems. J. Math. Anal. Appl. 2012, 389, 469–485. [Google Scholar] [CrossRef]
- Nashed, M.Z. On the perturbation theory for generalized inverse operators in Banach spaces. In Functional Analysis Methods in Numerical Analysis; Nashed, M.Z., Ed.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1979; Volume 701, pp. 180–195. [Google Scholar]
- Nashed, M.Z. Inner, outer, and generalized inverses in Banach and Hilbert spaces. Nemer. Funct. Anal. Optim. 1987, 9, 261–325. [Google Scholar] [CrossRef]
- Nashed, M.Z. A new approach to classification and regularization of ill-posed operator equations. In Inverse and Ill-Posed Problems; Engl, H.W., Groetsch, C.W., Eds.; Notes and reports in mathematics in science and engineering; Academic Press: New York, NY, USA, 1987; Volume 4, pp. 53–75. [Google Scholar]
- Pollock, S.; Rebholz, L.G. Anderson acceleration for contraction and noncontractive operators. IMA Numer. Anal. 2021, 41, 2841–2872. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Convex Analysis; Princeton Mathematics Series; Princeton University Press: Princeton, NJ, USA, 1970; Volume 28. [Google Scholar]
- Argyros, I.K.; George, S. On a unified convergence analysis for Newton-type methods solving generalized equations with the Aubin property. J. Complex. 2024, 81, 101817. [Google Scholar] [CrossRef]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications; John Wiley and Sons: New York, NY, USA, 1974. [Google Scholar]
- Bian, W.; Chen, X.; Kelley, C.T. Anderson acceleration for a class of nonsmooth fixed-point problems. SIAM J. Sci. Comp. 2021, 43, S1–S20. [Google Scholar] [CrossRef]
- Canes, E.; Kremlin, G.; Levitt, A. Convergence analysis of direct minimization and self-consistent iterations. SIAM J. Sci. Comp. 2021, 42, 243–274. [Google Scholar]
- Dontchev, A.L. Local analysis of a Newton-type method based on partial linearization. In The Mathematics of Numerical Analysis (Park City, UT, 1995), Lectures in Applied Mathematics; AMS: Providence, RI, USA, 1996; Volume 32, pp. 295–306. [Google Scholar]
- Dontchev, A.L.; Rockafellar, R.T. Newton’s method for generalized equations: Asequential implicit function theorem. Math. Program. 2010, 123, 139–159. [Google Scholar] [CrossRef]
- Dontchev, A.L.; Rockafellar, R.T. Convergence of inexact Newton methods for generalized equations. Math. Program. 2013, 139, 115–137. [Google Scholar] [CrossRef]
- Ferreira, O.P. A robust semi-local convergence analysis of Newtons method for cone inclusionproblems in Banach spaces under affine invariant majorant condition. J. Comput. Appl. Math. 2015, 279, 318–335. [Google Scholar] [CrossRef]
- Ferreira, O.P.; Goncalves, M.L.N.; Oliveira, P.R. Local convergence analysis of the Gauss–Newton method under a majorant condition. J. Complex. 2011, 27, 111–125. [Google Scholar] [CrossRef]
- Ferreira, O.P.; Goncalves, M.L.N.; Oliveira, P.R. Convergence of the Gauss–Newton method for convex composite optimization under a majorant condition. SIAM J. Optim. 2013, 23, 1757–1783. [Google Scholar] [CrossRef]
- Ferreira, O.P.; Silva, G.N. Inexact Newton’s Method to Nonlinear Functions with Valuesin a Cone. arXiv 2015, arXiv:1510.01947. [Google Scholar]
- Ferreira, O.P.; Silva, G.N. Local Convergence Analysis of Newton’s Method for Solving Strongly Regular Generalized Equations. arXiv 2016, arXiv:1604.04568. [Google Scholar] [CrossRef]
- Ferreira, O.P.; Svaiter, B.F. Kantorovich’s majorants principle for Newton’s method. Comput. Optim. Appl. 2009, 42, 213–229. [Google Scholar] [CrossRef]
- Háussler, W.M. A Kantorovich-type convergence analysis for the Gauss–Newton–Method. Numer. Math. 1986, 48, 119–125. [Google Scholar] [CrossRef]
- Josephy, N. Newton’s Method for Generalized Equations and the PIES Energy Model; University of Wisconsin-Madison: Madison, WI, USA, 1979. [Google Scholar]
- Nashed, M.Z.; Chen, X. Convergence of Newton-like methods for singular operators using outer inverses. Numer. Math. 1993, 66, 235–257. [Google Scholar] [CrossRef]
- Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton–Kantarovich type theorems. J. Complex. 2010, 25, 3–42. [Google Scholar] [CrossRef]
- Rheinboldt, W.C. A unified convergence theory for a class of iterative process. SIAM J. Numer. Anal. 1968, 5, 42–63. [Google Scholar] [CrossRef]
- Robinson, S.M. Extension of Newton’s method to nonlinear functions with values in a cone. Numer. Math. 1972, 19, 341–347. [Google Scholar] [CrossRef]
- Robinson, S.M. Normed convex processes. Trans. Amer. Math. Soc. 1972, 174, 127–140. [Google Scholar] [CrossRef]
- Robinson, S.M. Strongly regular generalized equations. Math. Oper. Res. 1980, 5, 43–62. [Google Scholar] [CrossRef]
- Argyros, I.K.; George, S.; Shakhno, S.; Regmi, S.; Havdiak, M.; Argyros, M.I. Asymptotically Newton–Type Methods without Inverses for Solving Equations. Mathematics 2024, 12, 1069. [Google Scholar] [CrossRef]
- Argyros, I.K.; George, S.; Regmi, S.; Argyros, C.I. Hybrid Newton-like Inverse Free Algorithms for Solving Nonlinear Equations. Algorithms 2024, 17, 154. [Google Scholar] [CrossRef]
- Deuflhard, P.; Heindl, G. Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal. 1979, 16, 1–10. [Google Scholar] [CrossRef]
- Kantorovich, L.V.; Akilov, G. Functional Analysis in Normed Spaces; Fizmatgiz: Moscow, Russia, 1959. [Google Scholar]
- Silva, G.N. Kantorovich’s theorem on Newton’s method for solving generalized equationsunder the majorant condition. Appl. Math. Comput. 2016, 286, 178–188. [Google Scholar]
- Yamamoto, T. Uniqueness of the solution in a Kantorovich-type theorem of Haussler for the Gauss–Newton Method. Jpn. J. Appl. Math. 1989, 6, 77–81. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Gutierrez, J.M.; Hernandez, M.A.; Romero, N.; Rubio, M.J. The Newton algorithm: From Newton to Kantorovich. Gac. R. Soc. Mat. Esp. 2010, 13, 53–76. (In Spanish) [Google Scholar]
- Ezquerro, J.A.; Hernandez-Veron, M.A. Domain of global convergence for Newton’s algorithm from auxiliary points. Appl. Math. Lett. 2018, 85, 48–56. [Google Scholar] [CrossRef]
- Catinas, E. The inexact, inexact perturbed, and quasi-Newton algorithms are equivalent models. Math. Comp. 2005, 74, 291–301. [Google Scholar] [CrossRef]
- Candelarion, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Generalized conformable fractional Newton-type method for solving nonlinear systems. Numer. Algorithms 2023, 93, 1171–1208. [Google Scholar] [CrossRef]
- Erfanifar, R.; Hajariah, M.A. A new multi-step method for solving nonlinear systems with high efficiency indices. Numer. Algorithms 2024. [Google Scholar] [CrossRef]
- Gutierrez, J.M.; Hernandez, M.A. Newtons method under weak Kantorovich conditions. IMA J. Numer. Anal. 2000, 20, 521–532. [Google Scholar] [CrossRef]
- Singh, S. A third order iterative algorithm for inversion of cumulative beta distribution. Numer. Algor. 2023, 94, 1331–1353. [Google Scholar]
Method | Iterations | CPU Time | Method | Iterations | CPU Time |
---|---|---|---|---|---|
(4)’ Newton | 4 | (4)’ Newton | 4 | ||
(21), | 6 | (26), | 8 | ||
(22), | 5 | (26), | 6 | ||
(23), | 4 | (26), | 5 | ||
(24), | 4 | (26), | 5 | ||
(25), | 4 | (26), | 4 |
Method | Iterations | CPU Time | Method | Iterations | CPU Time |
---|---|---|---|---|---|
(4)’ Newton | 3 | (4)’ Newton | 3 | ||
(21), | 5 | (26), | 3 | ||
(22), | 4 | (26), | 3 | ||
(23), | 3 | (26), | 3 | ||
(24), | 3 | (26), | 3 | ||
(25), | 3 | (26), | 3 |
Method | Iterations | CPU Time | Method | Iterations | CPU Time |
---|---|---|---|---|---|
(4)’ Newton | 5 | (4)’ Newton | 5 | ||
(21), | 7 | (26), | 9 | ||
(22), | 5 | (26), | 7 | ||
(23), | 5 | (26), | 6 | ||
(24), | 5 | (26), | 6 | ||
(25), | 5 | (26), | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, I.K.; George, S.; Regmi, S.; Argyros, M.I. On the Kantorovich Theory for Nonsingular and Singular Equations. Axioms 2024, 13, 358. https://doi.org/10.3390/axioms13060358
Argyros IK, George S, Regmi S, Argyros MI. On the Kantorovich Theory for Nonsingular and Singular Equations. Axioms. 2024; 13(6):358. https://doi.org/10.3390/axioms13060358
Chicago/Turabian StyleArgyros, Ioannis K., Santhosh George, Samundra Regmi, and Michael I. Argyros. 2024. "On the Kantorovich Theory for Nonsingular and Singular Equations" Axioms 13, no. 6: 358. https://doi.org/10.3390/axioms13060358
APA StyleArgyros, I. K., George, S., Regmi, S., & Argyros, M. I. (2024). On the Kantorovich Theory for Nonsingular and Singular Equations. Axioms, 13(6), 358. https://doi.org/10.3390/axioms13060358