1. Introduction
It is widely acknowledged that mathematical models describing the dynamic behaviors of infectious diseases have played a crucial role in understanding various diseases and their transmission mechanisms [
1,
2,
3,
4,
5,
6]. As early as 1927, Kermack and McKendrick put forward the classic susceptibility–infection–susceptibility model and established the corresponding threshold theory [
1]. Since then, various ordinary differential equations have been extended to analyze and control the spread of infectious diseases [
3,
7,
8,
9]. Controlling infectious diseases has become an increasingly complex issue, and vaccination has become a common preventive measure to reduce infection rates [
10,
11,
12]. Routine vaccinations against diseases such as measles, smallpox, and tuberculosis are now available in all countries. So, over the past few decades, some basic epidemic models with vaccination strategies have been studied. Safan and Rihan [
13] considered the following
with incomplete protection from the vaccine as follows:
where
denotes the number of members who are susceptible to an infection,
denotes the number of infected individuals, and
is the number of members who are immune to an infection as the result of vaccination. The definitions of the basic assumptions are as in
Table 1.
From the definitions, we can find that indicates that the vaccine is completely effective in preventing infection, whereas means that the vaccine is completely invalid.
Note that the basic regeneration number is the threshold for determining the prevalence of the disease. When , the system has only disease-free equilibrium point , and it is globally asymptotically stable in invariant set , which means that the disease will be extinct. When , is unstable, and there is a globally asymptotically stable endemic equilibrium point , which means that the disease will persist.
Due to the unstable changes in effective contact factors during epidemic diseases, the most common method to consider is introducing white noise. For a more detailed explanation, readers can refer to [
14,
15,
16,
17]. Moreover, simulating random perturbations from multiple perspectives is another important way. References [
18,
19,
20,
21,
22] extensively research Ornstein–Uhlenbeck processes driven by Brownian motion or fractional Brownian motion. The Ornstein–Uhlenbeck process, with modifications, can stochastically model interest rates, currency exchange rates, and commodity prices. According to the work in [
19], the stochastic mean-reverting process incorporates the effects of environmental fluctuations into the parameters, which is a biologically meaningful method. Yang, Zhang, and Jiang [
20] analyzed the persistence and extinction of a stochastic food chain system by incorporating the Ornstein–Uhlenbeck process. However, there is little information available in the literature concerning the SIS epidemic model with the Ornstein–Uhlenbeck process. Hence, in this paper, we consider the parameter
an Ornstein–Uhlenbeck process affected by randomly varying environments. The Ornstein–Uhlenbeck process in system (
1) is as follows:
where
is the time-mean value of
,
is the speed of reversion,
is the intensity of volatility, and
is standard Brownian motion.
Integrating both sides of the above equation, we can obtain
where
.
Then, we can obtain the expectation and variance in
,
Motivated by the above works, in this paper, we propose the following stochastic SIS epidemic model with the Ornstein–Uhlenbeck process:
where
.
The rest of this paper is arranged as follows.
Section 2 presents the existence and uniqueness analysis for system (
2), as well as the asymptotic properties of the solution. In
Section 3, we discuss the conditions for predator extinction in system (
2). Furthermore, we aim to obtain the exact expression for the density function for a linearized system corresponding to stochastic system (
2) around the original point in
Section 4. Finally, in
Section 5, we conduct several numerical simulations to validate the theoretical results.
2. Existence and Uniqueness of Global Positive Solution
Throughout this paper, let
be a complete probability space with a filtration
satisfying the usual conditions (i.e., it is right-continuous and
contains all
-null sets). Define
,
. More basic, detailed knowledge of stochastic systems, readers can refer to Mao [
23].
To study the long-term dynamics of a stochastic population system, the existence and uniqueness of the global solution to the model should be considered first. In this section, we give the following conclusion, which is a fundamental condition for the follow-up behavior study of stochastic systems.
Theorem 1. For any initial conditions , when , system (2) has a unique global positive solution . Proof. Since the coefficients of system (
2) are locally Lipsitz-continuous, there exists a unique local solution
on
. For any initial value
,
is an explosion moment. To prove that the local solution is global, we need only prove that
a.s. Let us make
sufficiently large that every element of
is in the interval
, and for every integer
, we define the stop time
In this paper, we assume that . Obviously, increases with . If , a.s. If a.s. is true, then a.s., which means for all , a.s. is true.
If
a.s. is true, then there exist two constants,
and
, such that
. So, there is an integer
, for all
, that satisfies
We construct the Lyapunov function
, as follows:
According to the property when , we can obtain that is a non-negative -function.
When we apply Ito’s formula, we have
where
and
K is a constant. We can obtain
.
Integrating from 0 to
and taking the expectation, we have
Let
, for
. By (
3),
. Notice that for any
, at least one of
is equal to
or
n. Therefore,
,
are not less than
or
. So,
where
is the indicative function of
.
leads to the contradiction
Therefore,
a.s. This means that the SDE system (
2) exists a unique global positive solution. □
3. Extinction of Stochastic System (2)
The states of symbiosis and extinction due to various disturbances in the environment are the major research topics in the SIS epidemic model. In this section, we give the results of extinction among predators in SIS epidemic system (
2). Before giving the main result, we first present the following Lemma [
20]:
Lemma 1. There exists a bounded domain with a regular boundary such that
: there is a positive number δ such that , , .
: there exists a non-negative -function V such that for any .
Then, the Markov process has a unique ergodic stationary distribution , andholds for all , where is an integrable function with respect to the measure π. Theorem 2. Assuming , then the solution , , , of system (2) has a stationary distribution with the initial value , ∈ Γ.
Proof. Obviously, system (
2) does not satisfy assumption
of Lemma 1. Hence, ergodicity and uniqueness cannot be obtained. However, to prove Theorem 2, we need to verify assumption
of Lemma 1. We expect to construct a neighborhood
and a non-negative
-function
such that
for any
. We consider an appropriate Lyapunov function form,
where
and
M are all undetermined positive constants.
We can simply define that
Applying
Ito’s formula to
and scaling it, we have
Let
. We have
By
, then
Taking
, we can obtain
where
.
Applying
Ito’s formula to
,
,
, and
and scaling them, we have
Moreover, notice that
is a continuous function, which satisfies that
Hence, there is a minimum of .
We define a non-negative
function
by
Combining (
13)–(
17), it can be shown that
where
.
We set
. Then,
Next, the corresponding compact subset is constructed as follows:
where
is a sufficiently small positive constant.
For convenience, we consider four subsets of
as follows:
In the following study, we will show that , for any .
Case 1. If
, by (
22), it can be derived that
Case 2. If
, by (
22), it can be derived that
Case 3. If
, by (
22), it can be derived that
Case 4. If
, by (
22), it can be derived that
It is worth noting that . Therefore, for any , it can be obtained equivalently that . □
The states of symbiosis and extinction due to various disturbances are the two most researched topics in the epidemic model. Furthermore, we give the extinction of SIS epidemic system (
2).
Theorem 3. For any initial value , if , the solution of system (2) satisfies This implies that the epidemic of system (2) will become extinct with probability 1. Proof. Applying
Ito’s formula to
, we obtain
Integrating the above formula from 0 to t on both sides, then
Dividing by
t on both sides of this inequality and taking the limit as
, we obtain
and
Consequently, it indicates that a.s. The disease will die out. □
4. Probability Density Function of Stochastic System (2)
According to Theorem 2, it is obtained that the global solution
of system (
2) follows a stationary distribution
. This section is devoted to deriving an explicit expression for the probability density function of the distribution
when
. In fact, this result will provide a wide range of possibilities for the further development of epidemiological dynamics. Before this, necessary transformations (equilibrium offset transformation) for system (
2) should be mentioned.
Theorem 4. If , a quasi-stable equilibrium point is defined to satisfy the following system of equations: When , Equation (33) has a unique positive solution, and , where . Proof. We assume that
,
. Then,
By Equation (
34), we have
Substituting Equation (
35) with Equation (
33), we have
Then, by
, we know that Equation (
30) has a unique solution. Thus,
,
. □
To facilitate the study of the problem, we can make the following transformations. Let , , , , where .
Denote
where
,
,
,
,
,
,
,
. Therefore, the linearized form of system (
2) at the quasi-stable equilibrium point is
The probability density function of the solution of Equation (
38) satisfies the Fokker–Planck equation and is in the form of Gaussian distribution
Here,
is the normalized constant and
a real symmetric matrix, which satisfies the algebraic equation
If
is an invertible matrix, Equation (
40) can be equivalent to
where
.
Denote
where
,
,
. By
,
,
, it can be concluded that
is positive definite and the quasi-stable equilibrium is locally asymptotically stable.
Here, we provide an important Lemma [
16]:
Lemma 2. For any matrix where and , B can move through at most two steps and B will be similar to a standard matrix.
Step 1. Find a matrix such that Step 2. Find a matrix such thatis a canonical matrix. Theorem 5. For any initial value and , if , then the stationary distribution around follows a unique normal probability density function , which is given by where Σ is a positive definite matrix, and the special form of Σ is given as follows: withand , , , , , , , , , , and , . Proof. Let , , and .
Then, we have .
Let , , , and .
Then, we have .
Now, let us solve the density function of Equation (
38). Firstly, let
, where
Then,
where
,
,
, and
.
Secondly, let
, where
Then,
where
,
,
.
Thirdly, by Lemma 2, let
, where
Finally, by Lemma 2, let
, where
Let
,
,
, and
. By Equation (
41), we can solve that
where
. Obviously, matrix
is positive definite. Then,
. □
6. Discussion and Conclusions
In this paper, we investigate the dynamic behavior of a stochastic SIS model with imperfect vaccination, where the population is demographically static and growing with an infection-induced mortality rate. We introduce the Ornstein–Uhlenbeck process to simulate random disturbances in the environment and obtain a more biologically meaningful stochastic SIS epidemic model. To the best of our knowledge, few papers currently study SIS epidemic models with Ornstein–Uhlenbeck processes.
In this paper, we investigate the dynamic effects of the Ornstein–Uhlenbeck process on SIS epidemic models under standard incidence. We construct several different and suitable Lyapunov functions to prove our conclusions. We obtain the existence and uniqueness of the global solution to the SIS epidemic model (
2). Furthermore, we establish sharp sufficient criteria for the existence of stationary distribution and reveal the effects of the Ornstein–Uhlenbeck process on the existence of stationary distribution. Specifically, if
and the parameters
of the Ornstein–Uhlenbeck process meet certain conditions, then system (
2) exists with a stable distribution. Otherwise, if
, the epidemic of system (
2) will become extinct with probability 1. The innovation of this paper is that we obtain a mathematical analysis result of the density function of four-dimensional stochastic model (
2), which is quite challenging. Numerically, we simulate the effects of the intensities of white noise on the stationary distribution and show that the degree of volatility will increase. Additionally, it is worth noting that the same methods are used in the survival analysis of the high-dimensional SIS epidemic model in our following research.
The numerical simulation example reveals that there exist periodic regimes in the deterministic system and metastable periodic regimes in the corresponding stochastic system, which is the subject of our future research. External interference will affect the balance of the SIS epidemic model. Therefore, it will be of extraordinary significance to minimize human interference and damage to the environment and organisms.