Eigenvalue of (p,q)-Biharmonic System along the Ricci Flow
Abstract
:1. Introduction
2. Preliminaries
3. Variation Formula
3.1. Variation in Eigenvalue along the Unnormalized Ricci Flow
3.2. Variation in Eigenvalue along Normalized Ricci Flow
4. Conclusions and Future Expectations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv, 2002; arXiv:0211159. [Google Scholar]
- Cao, X. Eigenvalues of (−Δ + ) on manifolds with non-negative curvature operator. Math. Ann. 2007, 337, 435–441. [Google Scholar]
- Cao, X. First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 2008, 136, 4075–4078. [Google Scholar] [CrossRef]
- Bracken, P. Evolution of the first eigenvalue of a (p, q)-Laplacian under a Harmonic Ricci flow. Adv. Pure Math. 2021, 11, 205–217. [Google Scholar] [CrossRef]
- Bracken, P. Evolution of eigenvalues of a geometric operator under Ricci flow on a Riemannian manifold. J. Math. Anal. Appl. 2022, 509, 125990. [Google Scholar] [CrossRef]
- Azami, S. Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow. J. New Res. Math. 2020, 6, 81–92. [Google Scholar]
- De, K.; De, U.C.; Gezer, A. Perfect fluid spacetimes and k-almost Yamabe solitons. Turk. J. Math. 2023, 47, 1236–1246. [Google Scholar] [CrossRef]
- Tsonev, D.M.; Mesquita, R.R. On the spectra of a family of geometric operators evolving with geometric flows. Commun. Math. Stat. 2021, 9, 181–202. [Google Scholar] [CrossRef]
- Li, J.F. Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 2007, 338, 927–946. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Abolarinwa, A.; Alshehri, N.; Ali, A. Bounds for Eigenvalues of q-Laplacian on Contact Submanifolds of Sasakian Space Forms. Mathematics 2023, 11, 4717. [Google Scholar] [CrossRef]
- El Khalil, A.; Kellati, S.; Touzani, A. On the spectrum of the p-biharmonic operator. Electron. J. Partial. Differ. Equ. 2002, 161–170. [Google Scholar]
- Benedikt, J. On the discreteness of the spectra of the Dirichlet and Neumann p-biharmonic problem. Abstr. Appl. Anal. 2004, 293, 777–792. [Google Scholar] [CrossRef]
- Benedikt, J.; Drábek, P. Estimates of the principal eigenvalue of the p-biharmonic operator. Nonlinear Anal. 2012, 75, 5374–5379. [Google Scholar] [CrossRef]
- Benedikt, J.; Drábek, P. Asymptotics for the principal eigenvalue of the p-biharmonic operator on the ball as p approaches 1. Nonlinear Anal. 2014, 95, 735–742. [Google Scholar] [CrossRef]
- Li, L.; Heidarkhani, S. Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation. Ann. Pol. Math. 2012, 104, 71–80. [Google Scholar] [CrossRef]
- Khalil, A.E.; Laghzal, M.; Alaoui, M.D.M.; Touzani, A. Eigenvalues for a class of singular problems involving p (x)-Biharmonic operator and q(x)-Hardy potential. Adv. Nonlinear Anal. 2019, 9, 1130–1144. [Google Scholar] [CrossRef]
- Khalil, A.; Alaoui, M.D.M.; Touzani, A. On the p-biharmonic operator with critical Sobolev exponent and nonlinear Steklov boundary condition. Inter. J. Anal. 2014, 2014, 498386. [Google Scholar] [CrossRef]
- Ghanmi, A.; Sahbani, A. Existence results for p(x)-biharmonic problems involving a singular and a Hardy type nonlinearities. AIMS Math. 2023, 8, 29892–29909. [Google Scholar] [CrossRef]
- Gyulov, T.; Moroşanu, G. On a class of boundary value problems involving the p-biharmonic operator. J. Math. Anal. Appl. 2010, 367, 43–57. [Google Scholar] [CrossRef]
- Candito, P.; Bisci, G.M. Multiple solutions for a Navier boundary value problem involving the p-biharmonic operator. Discrete Contin. Dyn. Syst. Ser. S. 2012, 5, 741–751. [Google Scholar] [CrossRef]
- Mohammed, M. Existence and nonexistence for boundary problem involving the p-biharmonic operator and singular nonlinearities. J. Func. Spaces 2023, 2023, 7311332. [Google Scholar]
- Barker, W.; Dung, N.T.; Seo, K.; Tuyen, N.D. Rigidity properties of p-biharmonic maps and p-biharmonic submanifolds. J. Math. Anal. Appl. 2024, 537, 128310. [Google Scholar] [CrossRef]
- Doumate, J.T.; Toyou, L.R.; Leadi, L.A. On eigenvalues of p-biharmonic operator and associated concave-convex type equation. Gulf J. Math. 2022, 13, 54–87. [Google Scholar] [CrossRef]
- Talbi, M.; Tsouli, N. On the spectrum of the weighted p-harmonic operator with weight. Medeterr. J. Math. 2007, 4, 73–86. [Google Scholar] [CrossRef]
- Ge, B.; Zhou, Q.; Wu, Y. Eigenvalues of the p(x)-biharmonic operator with indefinite weight. Z. Angew. Math. Phys. 2015, 66, 1007–1021. [Google Scholar] [CrossRef]
- Abolarinwa, A.; Yang, C.; Zhang, D. On the spectrum of the p-biharmonic operator under the Ricci flow. Results Math. 2020, 75, 54. [Google Scholar] [CrossRef]
- Abolarinwa, A. Some monotonic quantities involving the eigenvalues of p-bi-Laplacian along the Ricci flow. Iran. J. Sci. Technol. Trans. Sci. 2021, 46, 219–228. [Google Scholar] [CrossRef]
- Li, Y.; Siddiqi, M.; Khan, M.; Al-Dayel, I.; Youssef, M. Solitonic effect on relativistic string cloud spacetime attached with strange quark matter. AIMS Math. 2024, 9, 14487–14503. [Google Scholar] [CrossRef]
- Li, Y.; Aquib, M.; Khan, M.A.; Al-Dayel, I.; Youssef, M.Z. Chen-Ricci Inequality for Isotropic Submanifolds in Locally Metallic Product Space Forms. Axioms 2024, 13, 183. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, X.; Wang, Z. Singularity properties of Lorentzian Darboux surfaces in Lorentz–Minkowski spacetime. Res. Math. Sci. 2024, 11, 7. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E. Twisted Hypersurfaces in Euclidean 5-Space. Mathematics 2023, 11, 4612. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Li, Y.; Abdel-Baky, R.A.; Saad, M.K. On the Curvatures of Timelike Circular Surfaces in Lorentz-Minkowski Space. Filomat 2024, 38, 1–15. [Google Scholar]
- Li, Y.; Mofarreh, F.; Abdel-Baky, R.A. Kinematic-geometry of a line trajectory and the invariants of the axodes. Demonstratio Math. 2023, 56, 20220252. [Google Scholar] [CrossRef]
- Khan, M.N.I.; Mofarreh, F.; Haseeb, A.; Saxena, M. Certain results on the lifts from an LP-Sasakian manifold to its tangent bundles associated with a quarter-symmetric metric connection. Symmetry 2023, 15, 1553. [Google Scholar] [CrossRef]
- Khan, M.N.I.; Bahadur, O. Tangent bundles of LP-Sasakian manifold endowed with generalized symmetric metric connection. Facta Univ. Ser. Math. Inform. 2023, 38, 125–139. [Google Scholar]
- Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
- Khan, M.N.I. Liftings from a para-sasakian manifold to its tangent bundles. Filomat 2023, 37, 6727–6740. [Google Scholar]
- Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent bundles of P-Sasakian manifolds endowed with a quarter-symmetric metric connection. Symmetry 2023, 15, 753. [Google Scholar] [CrossRef]
- Azami, S. The first eigenvalue of − Δp along the Ricci flow. J. Nonlinear Funct. Anal. 2020. [Google Scholar]
- Li, L.; Tang, C.L. Existence of three solutions for (p,q)-biharmonic systems. Nonlinear Anal. 2010, 73, 796–805. [Google Scholar] [CrossRef]
- Kong, L.; Nichols, R. On principle eigenvalues of biharmonic systems. Commun. Pure Appl. Anal. 2021, 20, 15. [Google Scholar]
- Esen, H.; Ozdemir, N.; Secer, A.; Bayram, M. Traveling wave structures of some fourth-order nonlinear partial differential equations. J. Ocean Engi. Sci. 2023, 8, 124–132. [Google Scholar] [CrossRef]
- Feola, R.; Giuliani, F.; Iandoli, F.; Massetti, J.E. Local well posedness for a system of quasilinear PDEs modelling suspension bridges. Nonlinear Anal. 2024, 240, 113442. [Google Scholar] [CrossRef]
- Mukiawa, S.E.; Leblouba, M.; Messaoudi, S.A. On the well-posedness and stability for a coupled nonlinear suspension bridge problem. Commun. Pure Appl. Anal. 2023, 22, 2716–2743. [Google Scholar] [CrossRef]
- You, Y.L.; Kaveh, M. Fourth-order partial differential equations for noise removal. IEEE Trans. Image Proc. 2000, 9, 1723–1730. [Google Scholar] [CrossRef]
- Laghrib, A.; Chakib, A.; Hadri, A.; Hakim, A. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Disc. Cont. Dyn. Syst. 2020, 25, 415. [Google Scholar] [CrossRef]
- Barbu, T. Mixed noise removal framework using a nonlinear fourth-order PDE-based model. Appl. Math. Opti. 2021, 84, 1865–1876. [Google Scholar] [CrossRef]
- Barbu, T. Feature keypoint-based image compression technique using a well-posed nonlinear fourth-order PDE-based model. Mathematics 2020, 8, 930. [Google Scholar] [CrossRef]
- Chand, F. Fourth-order constants of motion for time independent classical and quantum systems in three dimensions. Can. J. Phys. 2010, 88, 165–174. [Google Scholar] [CrossRef]
- Bytev, V.V.; Kniehl, B.A.; Veretin, O.L. Specializations of partial differential equations for Feynman integrals. Nuclear Phys. B 2022, 984, 115972. [Google Scholar] [CrossRef]
- Hamilton, R.S. Three manifolds with positive Ricci curvature. J. Diff. Geom. 1982, 17, 255–306. [Google Scholar] [CrossRef]
- Chow, B.; Knopf, D. The Ricci Flow: An Introduction; NAMS: Providence, RI, USA, 2004. [Google Scholar]
- Azami, S. Variation of the first eigenvalue of (p,q)-Laplacian along the Ricci-harmonic flow flow. Int. J. Nonlinear Anal. Appl. 2021, 12, 193–204. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Li, Y.; Saha, A.; Abolarinwa, A.; Ghosh, S.; Hui, S.K. Eigenvalue of (p,q)-Biharmonic System along the Ricci Flow. Axioms 2024, 13, 332. https://doi.org/10.3390/axioms13050332
Yan L, Li Y, Saha A, Abolarinwa A, Ghosh S, Hui SK. Eigenvalue of (p,q)-Biharmonic System along the Ricci Flow. Axioms. 2024; 13(5):332. https://doi.org/10.3390/axioms13050332
Chicago/Turabian StyleYan, Lixu, Yanlin Li, Apurba Saha, Abimbola Abolarinwa, Suraj Ghosh, and Shyamal Kumar Hui. 2024. "Eigenvalue of (p,q)-Biharmonic System along the Ricci Flow" Axioms 13, no. 5: 332. https://doi.org/10.3390/axioms13050332
APA StyleYan, L., Li, Y., Saha, A., Abolarinwa, A., Ghosh, S., & Hui, S. K. (2024). Eigenvalue of (p,q)-Biharmonic System along the Ricci Flow. Axioms, 13(5), 332. https://doi.org/10.3390/axioms13050332