Extremal Bicyclic Graphs with Respect to Permanental Sums and Hosoya Indices
Abstract
:1. Introduction
2. Some Preliminaries
3. The Minimal Hosoya Indices of Bicyclics
3.1. The Second Minimal Hosoya Index of
3.2. The Minimal Hosoya Indices of
3.3. A Conclusion
4. The Minimal Permanental Sums of Bicyclic Graphs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Valiant, L.G. The complexity of computing the permanent. Theoret. Comput. Sci. 1979, 8, 189–201. [Google Scholar] [CrossRef]
- Jerrum, M. Two dimensional monomer-dimer systems are computationally intractable. J. Statist. Phy. 1987, 48, 121–134. [Google Scholar] [CrossRef]
- Cash, G.G. The permanental polynomial. J. Chem. Inf. Comput. Sci. 2000, 40, 1203–1206. [Google Scholar] [CrossRef]
- Cash, G.G. Permanental polynomials of smaller fullerenes. J. Chem. Inf. Comput. Sci. 2000, 40, 1207–1209. [Google Scholar] [CrossRef] [PubMed]
- Kasum, D.; Trinajstić, N.; Gutman, I. Chemical graph theory. III. On permanental polynomial. Croat. Chem. Acta. 1981, 54, 321–328. [Google Scholar]
- Merris, R.; Rebman, K.R.; Watkins, W. Permanental polynomials of graphs. Linear Algebra Appl. 1981, 38, 273–288. [Google Scholar] [CrossRef]
- Wu, T.; So, W. Unicyclic graphs with second largest and second smallest permanental sums. Appl. Math. Comput. 2019, 351, 168–175. [Google Scholar] [CrossRef]
- Tong, H. Parallel Algorithms for Computing Permanents and Permanental Polynomials of Sparse Matrices. Ph.D. Thesis, Tsinghua University, Beijing, China, 2006. [Google Scholar]
- Xie, S.; Gao, F.; Lu, X.; Huang, R.B.; Wang, C.R.; Zhang, X.; Liu, M.L.; Deng, S.-L.; Zheng, L.-S. Capturing the labile Fullerene[50] as C50Cl10. Science 2004, 304, 699. [Google Scholar] [CrossRef]
- Wu, T.; Lai, H. On the permanental sum of graphs. Appl. Math. Comput. 2018, 331, 334–340. [Google Scholar] [CrossRef]
- Li, W.; Qin, Z.; Zhang, H. Extremal hexagonal chains with respect to the coefficients sum of the permanental polynomial. Appl. Math. Comput. 2016, 291, 30–38. [Google Scholar] [CrossRef]
- Li, S.; Wei, W. Extremal octagonal chains with respect to the coefficients sum of the permanental polynomial. Appl. Math. Comput. 2018, 328, 45–57. [Google Scholar] [CrossRef]
- Li, W.; Qin, Z.; Wang, Y. Enumeration of permanental sums of lattice graphs. Appl. Math. Comput. 2020, 370, 124–914. [Google Scholar] [CrossRef]
- Wu, T.; So, W. Permanental sums of graphs of extreme sizes. Discret. Math. 2021, 344, 112353. [Google Scholar] [CrossRef]
- Farrell, E.J. An introduction to matching polynomials. J. Combin. Theory Ser. B 1979, 27, 75–86. [Google Scholar] [CrossRef]
- Godsil, C.D.; Gutman, I. On the theory of the matching polynomial. J. Graph Theory 1981, 5, 137–144. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, L.; Xu, X. The Hosoya index and the Merrifield-Simmons index. J. Math. Chem. 2018, 56, 3136–3146. [Google Scholar] [CrossRef]
- Wagner, S.; Gutman, I. Maxima and minima of the Hosoya index and the Merrifield– Simmons index: A survey of results and techniques. Acta Appl. Math. 2010, 112, 323–346. [Google Scholar] [CrossRef]
- Wu, T.; Jiu, X. Solution to a conjecture on the permanental sum. Axioms 2024, 13, 166. [Google Scholar] [CrossRef]
- Deng, H. The smallest Hosoya index in (n,n+1)-graphs. J. Math. Chem. 2008, 43, 119–133. [Google Scholar] [CrossRef]
- Wu, T.; Das, K. On the permanental sum of bicyclic graphs. Comput. Appl. Math. 2020, 39, 72–81. [Google Scholar] [CrossRef]
- Liu, H.; Lu, M. A unified approach to extremal cacti for different indices. MATCH Commun. Math. Comput. Chem. 2007, 58, 183–194. [Google Scholar]
- You, L.; Wei, C.; You, Z. The smallest Hosoya index of bicyclic graphs with given pendent vertices. J. Math. Res. Appl. 2014, 34, 12–32. [Google Scholar]
- Dolati, A.; Haghighat, M.; Golalizadeh, S.; Safari, M. The smallest Hosoya index of connected tricyclic graphs. MATCH Commun. Math. Comput. Chem. 2011, 65, 57–70. [Google Scholar]
- Ye, Y.; Pan, X.; Liu, H. Ordering unicyclic graphs with respect to Hosoya indices and Merrifield-Simmons indices. MATCH Commun. Math. Comput. Chem. 2008, 59, 191–202. [Google Scholar]
- Tepeh, A. Extremal bicyclic graphs with respect to Mostar index. Appl. Math. Comput. 2019, 355, 319–324. [Google Scholar] [CrossRef]
- Cruz, R.; Rada, J. Extremal values of the Sombor index in unicyclic and bicyclic graphs. J. Math. Chem. 2021, 59, 1098–1116. [Google Scholar] [CrossRef]
- Ilić, A.; Stevanović, D.; Feng, L.; Yu, G.; Dankelmann, P. Degree distance of unicyclic and bicyclic graphs. Discret. Appl. Math. 2011, 159, 779–788. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Bai, Y.; Xu, S. Extremal Bicyclic Graphs with Respect to Permanental Sums and Hosoya Indices. Axioms 2024, 13, 330. https://doi.org/10.3390/axioms13050330
Wu T, Bai Y, Xu S. Extremal Bicyclic Graphs with Respect to Permanental Sums and Hosoya Indices. Axioms. 2024; 13(5):330. https://doi.org/10.3390/axioms13050330
Chicago/Turabian StyleWu, Tingzeng, Yinggang Bai, and Shoujun Xu. 2024. "Extremal Bicyclic Graphs with Respect to Permanental Sums and Hosoya Indices" Axioms 13, no. 5: 330. https://doi.org/10.3390/axioms13050330
APA StyleWu, T., Bai, Y., & Xu, S. (2024). Extremal Bicyclic Graphs with Respect to Permanental Sums and Hosoya Indices. Axioms, 13(5), 330. https://doi.org/10.3390/axioms13050330