Next Article in Journal
Display Conventions for Octagons of Opposition
Next Article in Special Issue
Sparse Signal Recovery via Rescaled Matching Pursuit
Previous Article in Journal
Combined Observer-Based State Feedback and Optimized P/PI Control for a Robust Operation of Quadrotors
Previous Article in Special Issue
Vector-Valued Shepard Processes: Approximation with Summability
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Convergence of an Approximation Scheme of Fractional-Step Type, Associated to a Nonlinear Second-Order System with Coupled In-Homogeneous Dynamic Boundary Conditions

by
Constantin Fetecău
1,
Costică Moroşanu
2,* and
Silviu-Dumitru Pavăl
3
1
Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
2
Department of Mathematics, “Alexandru Ioan Cuza” University, Bd. Carol I, 11, 700506 Iaşi, Romania
3
Faculty of Automatic Control and Computer Engineering, Technical University “Gheorghe Asachi” of Iaşi, Dimitrie Mangeron, nr. 27, 700050 Iaşi, Romania
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(5), 286; https://doi.org/10.3390/axioms13050286
Submission received: 24 February 2024 / Revised: 21 April 2024 / Accepted: 22 April 2024 / Published: 23 April 2024

Abstract

:
The paper concerns a nonlinear second-order system of coupled PDEs, having the principal part in divergence form and subject to in-homogeneous dynamic boundary conditions, for both θ ( t , x ) and φ ( t , x ) . Two main topics are addressed here, as follows. First, under a certain hypothesis on the input data, f 1 , f 2 , w 1 , w 2 , α , ξ , θ 0 , α 0 , φ 0 , and ξ 0 , we prove the well-posedness of a solution θ , α , φ , ξ , which is θ ( t , x ) , α ( t , x ) W p 1 , 2 ( Q ) × W p 1 , 2 ( Σ ) , φ ( t , x ) , ξ ( t , x ) W ν 1 , 2 ( Q ) × W p 1 , 2 ( Σ ) , ν = min { q , μ } . According to the new formulation of the problem, we extend the previous results, allowing the new mathematical model to be even more complete to describe the diversity of physical phenomena to which it can be applied: interface problems, image analysis, epidemics, etc. The main goal of the present paper is to develop an iterative scheme of fractional-step type in order to approximate the unique solution to the nonlinear second-order system. The convergence result is established for the new numerical method, and on the basis of this approach, a conceptual algorithm, alg-frac_sec-ord_u+varphi_dbc, is elaborated. The benefit brought by such a method consists of simplifying the computations so that the time required to approximate the solutions decreases significantly. Some conclusions are given as well as new research topics for the future.

1. Introduction

Let Ω I R n , n 3 , be a bounded domain with a C 2 boundary Ω and [ 0 , T ] as a generic time interval. We consider the nonlinear second-order system of coupled PDEs
p 1 t θ ( t , x ) + q 1 t φ ( t , x ) p 2 div K 1 t , x , θ ( t , x ) θ ( t , x ) = p 3 f 1 ( t , x ) q 2 t φ ( t , x ) q 3 div K 2 t , x , φ ( t , x ) φ ( t , x ) = q 4 φ ( t , x ) φ 3 ( t , x ) + p 4 θ ( t , x ) + q 5 f 2 ( t , x ) in Q ,
subject to in-homogeneous dynamic boundary conditions in both unknown functions θ and φ , i.e.,
p 2 n θ + p 1 t θ Δ Γ θ + p 5 θ = w 1 ( t , x ) q 3 n φ + q 2 t φ Δ Γ φ + q 6 φ = w 2 ( t , x ) on Σ ,
and with the initial conditions
θ ( 0 , x ) = θ 0 ( x ) , φ ( 0 , x ) = φ 0 ( x ) in Ω ,
where Q = ( 0 , T ] × Ω , Σ = ( 0 , T ] × Ω , θ ( t , x ) , φ ( t , x ) , s θ ( s , · ) ( θ s , in short), θ = θ x , φ ( t , x ) = φ x ( t , x ) ( φ = φ x , in short) p , q , n = n(x), which are the same as in [1], while
  • p 1 , p 2 , p 3 , p 4 , p 5 , q 1 , q 2 , q 3 , q 4 , q 5 , and q 6 are positive values;
  • K 1 s , y , θ ( s , y ) and K 2 s , y , φ ( s , y ) are the mobility functions (attached to the solution θ ( s , y ) , φ ( s , y ) , ( s , y ) Q , of (1)1 and (1)2, respectively; see [2] for more details);
  • f 1 ( t , x ) L p ( Q ) and f 2 ( t , x ) L q ( Q ) are given functions (see [1,3,4,5,6,7,8,9,10,11,12,13,14,15,16] for more details).
  • w 1 ( t , x ) , w 2 ( t , x ) W p 1 1 2 p , 2 1 p ( Σ ) , p 2 are given functions;
  • θ 0 W 2 2 p ( Ω ) , with p 2 n θ 0 Δ Γ θ 0 + p 5 θ 0 = w 1 ( 0 , x ) ,
    and φ 0 W 2 2 q ( Ω ) , with q 3 n φ 0 Δ Γ φ 0 + q 6 φ 0 = w 2 ( 0 , x ) .
Remark 1. 
Besides classical meanings, like the density of heat sources or sinks of heat, the pairs of given functions { f 1 , f 2 } and { w 1 , w 2 } in (1and (2), respectively, can be also interpreted as distributed and boundary control, respectively, which opens a wide field of applicability for the nonlinear parabolic systems (1and (3), such as optimal control problems.
The basic tools in our approach are as follows:
  • The Leray–Schauder degree theory (see [17] and references therein);
  • The L p -theory of linear and quasi-linear parabolic equations [18];
  • Green’s first identity
    Ω y div z d x = Ω y · z d x Ω y n z d γ
    for any scalar-valued function y and z, a continuously differentiable vector field in n dimensional space;
  • The Lions and Peetre embedding Theorem (see [17], p. 18) to ensure the existence of a continuous embedding W p 1 , 2 ( Q ) L μ 1 ( Q ) , p 2 , where the real number μ 1 is defined as follows:
    μ 1 = any positive number 3 p if 1 p 2 n + 2 0 , p ( n + 2 ) n + 2 2 p if 1 p 2 n + 2 > 0 ,
    and, for k { 1 , 2 , } and 1 p , W p k , 2 k ( Q ) denotes the Sobolev space on Q:
    W p k , 2 k ( Q ) = y L p ( Q ) : r t r q x q y L p ( Q ) , for 2 r + q 2 k ,
    i.e., the spaces of functions whose t-derivatives and x-derivatives up to the order k and 2 k , respectively, belong to L p ( Q ) ;
  • Also, we shall use the set C 1 , 2 ( Q ¯ ) ( C 1 , 2 ( Q ) ) of all continuous functions in Q ¯ (in Q) having continuous derivatives u t , u x , u x x in Q ¯ (in Q), as well as the Sobolev spaces W p ( Ω ) , W p , / 2 ( Σ ) (see [17,19] and reference therein);
  • As far as the techniques used in the paper are concerned, it should be noted that we derive the a priori estimates in L p ( Q ) and L p ( Σ ) .
In the following, we denote by C several positive constants, being understood that the extra dependencies are set out on occurrence.

2. Well-Posedness of Solutions to the Nonlinear Second-Order System (1)–(3)

In order to approach the nonlinear second-order systems (1)–(3), we use the same idea as in V. Berinde, A. Miranville, and C. Moroşanu [1]. In this regard, let ζ = θ and ξ = φ be further variables such that ζ ( 0 , x ) = θ 0 , ξ ( 0 , x ) = φ 0 on Ω , while for the remaining data in (1)–(3), we keep the same meanings formulated at the beginning. Correspondingly, the boundary conditions in (2) are approached in the sequel by
θ = α p 2 n θ + p 1 t α Δ Γ α + p 5 α = w 1 ( t , x ) on Σ ,
φ = ξ q 3 n φ + q 2 t ξ Δ Γ ξ + q 6 ξ = w 2 ( t , x ) on Σ ,
where ζ ( 0 , x ) = ζ 0 ( x ) , ξ ( 0 , x ) = ξ 0 ( x ) , x Ω , and ζ 0 , ξ 0 W 2 2 p ( Ω ) , p 2 .
Accordingly, problems (1)–(3) can be rewritten suitably as follows:
p 1 t θ ( t , x ) p 2 u x j K 1 ( t , x , θ ) θ x i θ x j x i = A 1 ( t , x , θ , θ x i ) q 1 t φ + p 3 f 1 ( t , x ) in Q θ ( t , x ) = α ( t , x ) on Σ p 2 n θ + p 1 t α Δ Γ α + p 5 α = w 1 ( t , x ) on Σ θ ( 0 , x ) = θ 0 ( x ) on Ω α ( 0 , x ) = α 0 ( x ) x Ω ,
q 2 t φ ( t , x ) q 3 φ x j ( K 2 ( t , x , φ ) φ x i φ x j x i = A 2 ( t , x , φ , φ x i ) + q 4 φ φ 3 + p 4 θ ( t , x ) + q 5 f 2 ( t , x ) in Q φ ( t , x ) = ξ ( t , x ) on Σ q 3 n φ + q 2 t ξ Δ Γ ξ + q 6 ξ = w 2 ( t , x ) on Σ φ ( 0 , x ) = φ 0 ( x ) on Ω ξ ( 0 , x ) = ξ 0 ( x ) x Ω ,
where (see [18])
θ x j x i = 2 x j x i θ ( t , x ) , i , j = 1 , , n , A 1 t , x , θ ( t , x ) , θ x i ( t , x ) = θ K 1 ( t , x , θ ) θ x i θ x i + x i K 1 ( t , x , θ ) θ x i , i = 1 , , n ,
and
φ x j x i = 2 x j x i φ ( t , x ) , i , j = 1 , , n , A 2 t , x , φ ( t , x ) , φ x i ( t , x ) = φ K 2 ( t , x , φ ) φ x i φ x i + x i K 2 ( t , x , φ ) φ x i , i = 1 , , n .

The Validity of an Auxiliary Nonlinear Second-Order Boundary Value Problem

We consider the following auxiliary nonlinear parabolic problem derived from (7):
q 2 t Φ ( t , x ) q 3 div K 2 t , x , Φ ( t , x ) Φ ( t , x ) = q 4 Φ ( t , x ) Φ 3 ( t , x ) + h ( t , x ) in Q Φ ( t , x ) = ξ ( t , x ) on Σ q 3 n Φ + q 2 t ξ Δ Γ ξ + q 6 ξ = w 2 ( t , x ) on Σ Φ ( 0 , x ) = Φ 0 ( x ) on Ω ξ ( 0 , x ) = ξ 0 ( x ) x Ω .
Definition 1. 
Any solution Φ ( t , x ) , ξ ( t , x ) of problem (8is called the classical solution if it is continuous in Q ¯ , has continuous derivatives Φ t , Φ x , Φ x x in Q and ζ t , ζ x , ζ x x on Σ, satisfies the equation (8)1 at all points ( t , x ) Q , and satisfies conditions (8)2,3 and (8)4,5 on the lateral surface Σ of the cylinder Q and for t = 0 , respectively.
Our main results regarding the existence, uniqueness, and regularity of solutions to problem (8) (practically, well-posedness of the solutions to the nonlinear second-order boundary value problem (1) or (7)) are as follows.
Theorem 1. 
Suppose Φ ( t , x ) , ξ ( t , x ) C 1 , 2 ( Q ) × C 1 , 2 ( Σ ) is a classical solution of problem (8), and for positive numbers M, M 0 , m 1 , M 1 , M 2 , M 3 , M 4 , and M 5 , one has the following:
I1
| Φ ( t , x ) | < M for any ( t , x ) Q , and for any z ( t , x ) , the map K 2 ( t , x , z ) is continuous and differentiable in x; its x-derivatives are measurable bounded, and it satisfies the uniformly parabolic conditions (see [18]), and
0 < K 2 m K 2 t , x , Φ ( t , x ) < K 2 M , f o r ( t , x ) Q ,
i = 1 n | a i ( t , x , Φ ( t , x ) , z ( t , x ) ) | + Φ a i ( t , x , Φ ( t , x ) , z ( t , x ) ) ( 1 + | z | ) + i , j = 1 n x j a i ( t , x , Φ ( t , x ) , z ( t , x ) ) + | Φ ( t , x ) | M 0 ( 1 + | z | ) 2 .
I2
For any sufficiently small ε > 0 , functions Φ ( t , x ) and K 2 ( t , x , Φ ( t , x ) ) satisfy the relations
Φ L s ( Q ) M 2 , K 2 ( t , x , Φ ( t , x ) ) Φ x i L r ( Q ) < M 3 , i = 1 , , n ,
where
r = max { p , 4 } p 4 4 + ε p = 4 , s = max { p , 2 } p 2 2 + ε p = 2 .
Then, h ( t , x ) L p ( Q ) , Φ 0 W 2 2 p ( Ω ) , ξ 0 ( x ) W 2 2 p ( Γ ) , w 2 W p 1 1 2 p , 2 1 p ( Σ ) , with p 3 2 , and there exists a unique solution ( Φ , ξ ) W p 1 , 2 ( Q ) × W p 1 , 2 ( Σ ) to (8that satisfies
Φ W p 1 , 2 ( Q ) + ξ W p 1 , 2 ( Σ ) C { 1 + Φ 0 W 2 2 p ( Ω ) + ξ 0 W 2 2 p ( Ω ) + Φ 0 L 3 p 2 ( Ω ) 3 p 2 p + ξ 0 L 3 p 2 ( Ω ) 3 p 2 p + h L 3 p 2 ( Q ) 3 p 2 p + w 2 L 3 p 2 ( Σ ) 3 p 2 p + w 2 W p 1 1 2 p , 2 1 p ( Σ ) ,
where C > 0 is independent on Φ, ζ, h, and w 2 .
If ( Φ 1 , ξ 1 ) , ( Φ 2 , ξ 2 ) are solutions to (8), corresponding to ( Φ 0 1 , ξ 0 1 ) , ( Φ 0 2 , ξ 0 2 )   W 2 2 p ( Ω ) × W 2 2 p ( Ω ) , h 1 , h 2 , w 2 1 , and w 2 2 , respectively, such that
Φ 1 W p 1 , 2 ( Q ) , Φ 2 W p 1 , 2 ( Q ) M 4 ,
ξ 1 W p 1 , 2 ( Σ ) , ξ 2 W p 1 , 2 ( Σ ) M 5 ,
then the following holds
m a x ( t , x ) Q | Φ 1 Φ 2 | + m a x ( t , x ) Σ | ξ 1 ξ 2 | C 1 e C T m a x m a x ( t , x ) Ω | Φ 0 1 Φ 0 2 | , m a x ( t , x ) Ω | ξ 0 1 ξ 0 2 | , m a x ( t , x ) Q | h 1 h 2 | , m a x ( t , x ) Σ | w 2 1 w 2 2 | ,
where C 1 > 0 , C > 0 are independent on { Φ 1 , ξ 1 , h 1 , w 2 1 , Φ 0 1 , ξ 0 1 } and Φ 2 , ξ 2 , h 2 , w 2 2 , Φ 0 2 , ξ 0 2 . In particular, the uniqueness of the solution to (8holds.
Corresponding to a different formulation than the one presented in (2), results similar to those in Theorem 1 were established in [1,2,13,17,18,19]. Here, we omit details of the proof.

3. The Validity of the Problem (6) and (7) in the Class W p 1 , 2 ( Q ) × W p 1 , 2 ( Σ ) , W ν 1 , 2 ( Q ) × W p 1 , 2 ( Σ )

Definition 2. 
Any solution θ , α , φ , ξ of the nonlinear second-order boundary value problem (6) and (7is called the classical solution if it is continuous in Q, has continuous derivatives θ t , θ x , θ x x , φ t , φ x , φ x x in Q and α t , α x , α x x , ξ t , ξ x , ξ x x on Σ, satisfies the equation (6)1 and (7)1 at all points ( t , x ) Q as well as the conditions (6)2,3-(7)2,3 and (6)4,5-(7)4,5 for  ( t , x ) Σ and for t = 0 , respectively.
Here, we approach the systems (6) and (7) in the spirit given by Hadamard’s well-posedness conditions (see [17], p. 46). Therefore, the main results regarding the existence, uniqueness, and regularity of solutions to (6) and (7) (practically, the well-posedness of the solutions to the problem (1)–(3)) are as follows:
Theorem 2. 
Suppose { θ , α , φ , ξ } C 1 , 2 ( Q ) × C 1 , 2 ( Σ ) 2 is a classical solution of problems (6) and (7), and for positive numbers
M , M 0 , M 1 , M 2 , M 3 , M 4 , a n d N , N 0 , N 1 , N 2 , N 3 , N 4 ,
one has the following:
I1
| θ ( t , x ) | < M , and for any t , x , z , the function K 1 ( t , x , θ ) is continuous and differentiable with respect to x, θ; its x-derivatives and θ-derivatives are bounded-measurable, it satisfies the uniformly parabolic conditions (see [19]), and
0 < K 1 m K 1 ( t , x , θ ) < K 1 M , f o r ( t , x ) Q , i = 1 n | K 1 ( t , x , θ ) θ x i | + θ ( K 1 ( t , x , θ ) θ x i ) ( 1 + | z | ) + i , j = 1 n x j ( K 1 ( t , x , θ ) θ x i ) M 0 ( 1 + | z | ) 2 .
I2
For every ε > 0 , functions θ ( t , x ) and K 1 ( t , x , θ ) satisfy
θ L s ( Q ) M 1 , K 1 ( t , x , θ ) θ x i L r ( Q ) < M 2 , i = 1 , . . . , n ,
where
r = max { p , 4 } p 4 4 + ε p = 4 , s = max { p , 2 } p 2 2 + ε p = 2 .
J1
| φ ( t , x ) | < N , and for any t , x , z , function K 2 ( t , x , φ ) is continuous and differentiable with respect to x, φ; its x-derivatives and φ-derivatives are bounded-measurable, it satisfies the uniformly parabolic conditions (see [19]), and
0 < K 2 m K 2 ( t , x , φ ) < K 2 M , f o r ( t , x ) Q , i = 1 n | K 2 ( t , x , φ ) φ x i | + φ ( K 2 ( t , x , φ ) φ x i ) ( 1 + | z | ) + i , j = 1 n x j ( K 2 ( t , x , φ ) φ x i ) N 0 ( 1 + | z | ) 2 .
J2
For every ε > 0 , the functions φ ( t , x ) and K 2 ( t , x , φ ) satisfy
φ L s ( Q ) N 1 , K 2 ( t , x , φ ) φ x i L r ( Q ) < N 2 , i = 1 , . . . , n ,
where the quantities r and s are defined in I2.
Then, f 1 L p ( Q ) , θ 0 W 2 2 p ( Ω ) , α 0 ( x ) W 2 2 p ( Ω ) , w 1 W p 1 1 2 p , 2 1 p ( Σ ) , and f 2 L q ( Q ) , φ 0 W 2 2 q ( Ω ) , ξ 0 ( x ) W 2 2 p ( Ω ) , w 2 W p 1 1 2 p , 2 1 p ( Σ ) , and there exists a unique solution θ W p 1 , 2 ( Q ) , φ W ν 1 , 2 ( Q ) ( ν = m i n { q , μ } ), α , ξ W p 1 , 2 ( Σ ) to (6and (7), p , q 3 2 that satisfies
θ W p 1 , 2 ( Q ) + φ W ν 1 , 2 ( Q ) + α W p 1 , 2 ( Σ ) + ξ W p 1 , 2 ( Σ ) C 1 + θ 0 W 2 2 p ( Ω ) + φ 0 W 2 2 q ( Ω ) 3 p 2 p + α 0 W 2 2 p ( Ω ) + ξ 0 W 2 2 p ( Ω ) 3 p 2 p + f 1 L p ( Q ) + f 2 L q ( Q ) + w 1 W p 1 1 2 p , 2 1 p ( Σ ) + w 2 W p 1 1 2 p , 2 1 p ( Σ ) ,
where the constant C > 0 is independent of θ, φ, ζ, ξ, f 1 , f 2 , w 1 , and w 2 .
If ( θ 1 , α 1 , φ 1 , ξ 1 ) , ( θ 2 , α 2 , φ 2 , ξ 2 ) are two solutions to (6and (7corresponding to
( θ 0 1 , α 0 1 , φ 0 1 , ξ 0 1 ) , ( θ 0 2 , α 0 2 , φ 0 2 , ξ 0 2 ) W 2 2 p ( Ω ) × W 2 2 p ( Ω ) × W 2 2 q ( Ω ) × W 2 2 p ( Ω ) ,
( f 1 a , f 2 a ) , ( f 1 b , f 2 b ) L p ( Q ) × L q ( Q ) , w 1 a , w 2 a , w 1 b , w 2 b W p 1 1 2 p , 2 1 p ( Σ ) , r e s p e c t i v e l y , s u c h t h a t
θ 1 W p 1 , 2 ( Q ) , θ 2 W p 1 , 2 ( Q ) M 3 , α 1 W p 1 , 2 ( Σ ) , α 2 W p 1 , 2 ( Σ ) M 4 , φ 1 W p 1 , 2 ( Q ) , φ 2 W ν 1 , 2 ( Q ) N 3 , ξ 1 W p 1 , 2 ( Σ ) , ξ 2 W p 1 , 2 ( Σ ) N 4 ,
then the following estimate holds:
m a x ( t , x ) Q | θ 1 θ 2 | + m a x ( t , x ) Σ | α 1 α 2 | + m a x ( t , x ) Q | φ 1 φ 2 | + m a x ( t , x ) Σ | ξ 1 ξ 2 | C 1 e C T m a x { m a x ( t , x ) Ω | θ 0 1 θ 0 2 | , m a x ( t , x ) Ω | α 0 1 α 0 2 | , m a x ( t , x ) Ω | φ 0 1 φ 0 2 | , m a x ( t , x ) Ω | ξ 0 1 ξ 0 2 | , m a x ( t , x ) Q | f 1 a f 1 b | , m a x ( t , x ) Q | f 2 a f 2 b | , m a x ( t , x ) Σ | w 1 a w 1 b | , m a x ( t , x ) Σ | w 2 a w 2 b | } ,
where the positive constants C 1 > 0 , C > 0 are independent of
θ 1 , α 1 , φ 1 , ξ 1 , f 1 a , w 1 a , θ 0 1 , α 0 1 , φ 0 1 , ξ 0 1 a n d θ 2 , α 2 , φ 2 , ξ 2 , f 2 a , w 2 a , θ 0 2 , α 0 2 , φ 0 2 , ξ 0 2 .
In particular, the uniqueness of the solution to problems (6and (7holds.
Proof of the Theorem 2. 
Here, we apply the Leray–Schauder principle in order to prove the first part of the result established by Theorem 2. On this line, we consider suitable the Banach space
B S = W p 0 , 1 ( Q ) × L p ( Σ ) ,
endowed with the norm · B S , given by
( v , v ¯ ) B S = v L p ( Q ) + v x L p ( Q ) + v ¯ L p ( Σ ) ,
and a nonlinear operator S : B S × [ 0 , 1 ] B S , defined by
( θ , α ) = S ( v , v ¯ , λ ) = θ ( v , v ¯ , λ ) , α ( v , v ¯ , λ ) , ( v , v ¯ ) B S , λ [ 0 , 1 ] ,
where ( θ , α ) is the unique solution to the following linear boundary value problem (see (6)):
p 1 t θ ( t , x ) λ p 2 v x j ( K 1 ( t , x , v ) v x i ) ( 1 λ ) δ i j θ x i x j = λ A 1 ( t , x , v , v x i ) q 1 t Φ ( t , x ) + p 3 f 1 ( t , x ) in Q θ ( t , x ) = α ( t , x ) on Σ p 2 n θ + p 1 t α Δ Γ α + p 5 α = λ w 1 ( t , x ) on Σ θ ( 0 , x ) = λ θ 0 ( x ) on Ω α ( 0 , x ) = λ α 0 ( x ) x Γ ,
where Φ represents the unique solution to the nonlinear parabolic boundary value problem (8) corresponding to h ( t , x ) = p 4 v ( t , x ) + q 5 f 2 ( t , x ) , i.e.,
q 2 t Φ ( t , x ) q 3 Φ x j K 2 ( t , x , Φ ) Φ x i Φ x j x i = A 2 ( t , x , Φ , Φ x i ) + q 4 Φ Φ 3 + p 4 v ( t , x ) + q 5 f 2 ( t , x ) in Q , Φ ( t , x ) = ξ ( t , x ) on Σ q 3 n Φ + q 2 t ξ Δ Γ ξ + q 6 ξ = w 2 ( t , x ) on Σ Φ ( 0 , x ) = φ 0 ( x ) on Ω ξ ( 0 , x ) = ξ 0 ( x ) x Γ .
Let us recall that
f 1 ( t , x ) L p ( Q ) , f 2 ( t , x ) L q ( Q ) and w 1 ( t , x ) , w 2 ( t , x ) W p 1 1 2 p , 2 1 p ( Σ )
are given functions, while p and q satisfy the relation (4) in [1].
Since p q (see [1]), then h ( t , x ) = p 4 v ( t , x ) + q 5 f 2 ( t , x ) L p ( Q ) . Using Theorem 1 (see (22)), we obtain that Φ W p 2 , 1 ( Q ) and, thus, q 1 t Φ ( t , x ) + p 3 f 1 ( t , x ) L p ( Q ) . The L p -theory guarantees that the linear parabolic equation (21) has a unique solution θ W p 2 , 1 ( Q ) . Accordingly, the operator S introduced in (20) is well defined.
Subsequently, following the same steps as in [1,2,17,18], we obtain (17) and (19) in Theorem 2.
The uniqueness of solution { θ , φ } follows from (19) by taking f 1 a = f 1 b , f 2 a = f 2 b , w 1 a = w 1 b , and w 2 a = w 2 b , and thus, the proof of Theorem 2 is complete.    □

4. Approximating Scheme—Convergence

Following the same steps as in [17,18], we associate to the nonlinear system (6) and (7) the following numerical scheme:
p 1 t θ ε ( t , x ) + q 1 t φ ε ( t , x ) p 2 div K 1 t , x , θ ε ( t , x ) θ ε ( t , x ) = p 3 f 1 ( t , x ) in Q i ε p 2 n θ ε + p 1 t α ε Δ Γ α ε + p 5 α ε = w 1 ( t , x ) on Σ i ε θ + ε ( i ε , x ) = θ ε ( i ε , x ) , θ ε ( 0 , x ) = θ 0 ( x ) on Ω , α ε ( i ε , x ) = θ ε ( i ε , x ) on Ω ,
q 2 t φ ε ( t , x ) q 3 div K 2 t , x , φ ε ( t , x ) φ ε ( t , x ) = q 4 φ ε ( t , x ) + p 4 θ ε ( t , x ) + q 5 f 2 ( t , x ) in Q i ε q 3 n φ ε + q 2 t ξ ε Δ Γ ξ ε + q 6 ξ ε = w 2 ( t , x ) in Σ i ε φ ε ( i ε , x ) = z ( ε , φ ε ( i ε , x ) ) on Ω , ξ ε ( i ε , x ) = φ ε ( i ε , x ) on Ω ,
with z ( ε , φ ε ( i ε , x ) ) being the solution of Cauchy problem:
z ( s ) + q 4 z 3 ( s ) = 0 s [ 0 , ε ] z ( 0 ) = φ ε ( i ε , x ) on Ω φ ε ( 0 , x ) = φ 0 ( x ) on Ω φ ε ( 0 , x ) = ξ 0 ( x ) on Ω ,
for i = 0 , 1 , , M ε 1 , where φ ε stands for the left-hand limit of φ ε .
Detailed discussions with respect to the advantage of (23)–(25) can be found in the works [3,4,15,17,18].
Next, we are interested in the convergence of the sequence ( θ ε , α ε ) , ( φ ε , ξ ε ) of solutions to (23) and (24) to ( θ , α ) , ( φ , ξ ) —the solution of problems (6) and (7) (see [3,17,18,20] for more details).
For later use, we set
W Q = L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) W 1 , 2 ( [ 0 , T ] ; ( H 1 ( Ω ) ) ) and W Σ = L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) W 1 , 2 ( [ 0 , T ] ; ( H 1 ( Ω ) ) ) .
Definition 3. 
By a weak solution to the nonlinear system (6) and (7), we mean the pair of functions ( θ , α ) , ( φ , ξ ) W Q × W Σ , θ = α and φ = ξ on Σ, which satisfy (6) and (7in the following sense:
p 1 Q t θ , ϕ 1 d t d x + q 1 Q t φ , ϕ 1 d t d x + p 2 Q K 1 t , x , θ θ · ϕ 1 d t d x + p 1 Σ t α , ϕ 2 d t d γ + Σ α · ϕ 2 d t d γ + q 6 Σ α ϕ 2 d t d γ = p 3 Q f 1 ϕ 1 d t d x + Σ w 1 ϕ 2 d t d γ ,
q 1 Q t φ , ϕ 1 d t d x + q 3 Q K 2 t , x , φ φ · ϕ 1 d t d x + q 1 Σ t ξ , ϕ 2 d t d γ + Σ ξ · ϕ 2 d t d γ + q 6 Σ ξ ϕ 2 d t d γ = q 4 Q ( φ φ 3 ) ϕ 1 d t d x + p 4 Q θ ϕ 1 d t d x + q 5 Q f 2 ϕ 1 d t d x + Σ w 2 ϕ 2 d t d γ , ( ϕ 1 , ϕ 2 ) L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) × L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) ,
with ϕ 1 = ϕ 2 on Σ and θ ( 0 , x ) = θ 0 ( x ) , φ ( 0 , x ) = φ 0 ( x ) on Ω.
Definition 4. 
By a weak solution to the nonlinear system (23and (24), we mean the pair of functions ( θ ε , α ε ) , ( φ ε , ξ ε ) W Q i ε × W Σ i ε , θ i ε = α i ε and φ i ε = ξ i ε on Σ i ε , i { 0 , 1 , . . . , M ε 1 } , which satisfy (23and (24in the following sense:
p 1 Q t θ ε , ϕ 1 d t d x + q 1 Q t φ ε , ϕ 1 d t d x + p 2 Q K 1 t , x , θ ε θ ε · ϕ 1 d t d x + p 1 Σ t α ε , ϕ 2 d t d γ + Σ α ε · ϕ 2 d t d γ + q 6 Σ α ε ϕ 2 d t d γ = p 3 Q f 1 ϕ 1 d t d x + Σ w 1 ϕ 2 d t d γ ,
q 2 Q t φ ε , ϕ 1 d t d x + q 3 Q K 2 t , x , φ ε φ ε · ϕ 1 d t d x + q 2 Σ t ξ ε , ϕ 2 d t d γ + Σ ξ ε · ϕ 2 d t d γ + q 6 Σ ξ ε ϕ 2 d t d γ = q 4 Q φ ε ϕ 1 d t d x + p 4 Q θ ε ϕ 1 d t d x + q 5 Q f 2 ϕ 1 d t d x + Σ w 2 ϕ 2 d t d γ , ( ϕ 1 , ϕ 2 ) L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) × L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) ,
and θ ε ( 0 , x ) = θ 0 ( x ) , φ ε ( 0 , x ) = φ 0 ( x ) on Ω.
In (26)–(29), we denote by the same symbol Q the duality between
L 2 ( [ 0 , T ] ; H 1 ( Ω ) ) and L 2 ( [ 0 , T ] ; ( H 1 ( Ω ) ) ) .

Convergence of the Numerical Scheme (23) and (24)

Here, we prove the convergence of the solution to the numerical scheme (23) and (24), associated with the nonlinear systems (6) and (7). Therefore, the following holds:
Theorem 3. 
Assume that θ 0 , φ 0 W p 2 2 p ( Ω ) , p 2 , with p 2 n θ 0 + Δ Γ θ 0 + p 5 θ 0 = w 1 ( 0 , x ) , q 3 n φ 0 + Δ Γ φ 0 + q 6 φ 0 = w 2 ( 0 , x ) on Ω and w 1 , w 2 W p 1 1 2 p , 2 1 p ( Σ ) . Let ( θ ε , α ε ) , ( φ ε , ξ ε ) be the solution of the approximating scheme (23and (24). As ε 0 , one has
( θ ε ( s ) , α ε ( s ) ) , ( φ ε ( s ) , ξ ε ( s ) ) ( θ * ( s ) , α * ( s ) ) , ( φ * ( s ) , ξ * ( s ) ) strongly in L 2 ( Ω ) × L 2 ( Ω ) for any s ( 0 , T ] ,
where ( θ * ( s ) , α * ( s ) ) , ( φ * ( s ) , ξ * ( s ) ) W Q × W Σ is the weak solution of the nonlinear systems (6and (7).
The inequalities (31)–(34) (listed below) are essential in proving the main result of the present work—Theorem 3.
φ ε ( i ε , x ) L 2 ( Ω ) 2 φ ε ( i ε , x ) L 2 ( Ω ) 2 ,
z 2 ( ε , φ ε ( i ε , x ) ) φ ε ( i ε , x ) 2 , a . e x Ω ,
φ ε ( i ε , x ) L 2 ( Ω ) φ ε ( i ε , x ) L 2 ( Ω ) ,
z ( ε , x ) φ ε ( i ε , x ) L 2 ( Ω ) ε L ,
i = 0 , 1 , . . . , M ε 1 .
Proof of Theorem 3. 
Following the same steps as in [17], we obtain the solution to problem (24) as φ ε W p 1 , 2 ( Q i ε ) L ( Q i ε ) , i { 0 , 1 , . . . , M ε 1 } .
Next, we give a priori estimates in Q i ε , i { 0 , 1 , . . . , M ε 1 } . Multiplying (23)1 by p 4 q 1 θ ε and (24)1 by φ t ε and using integration by parts, Green’s formula, and the relations (28) and (29), we obtain
p 4 q 1 p 1 2 d d t Ω | θ ε | 2 d x + p 4 q 1 p 1 2 d d t Ω | α ε | 2 d γ + p 4 Ω θ ε φ t ε d x + p 4 q 1 p 2 Ω K 1 ( t , x , θ ε ) | θ ε | 2 d x + p 4 q 1 Ω | Γ α ε | 2 d γ + p 4 q 1 p 5 Ω | α ε | 2 d γ = p 4 q 1 p 3 Ω f 1 θ ε d x + p 4 q 1 Ω w 1 θ ε d γ ,
q 2 Ω | φ t ε | 2 d x + q 2 Ω | ξ t ε | 2 d γ + q 3 2 Ω K 2 ( t , x , φ ε ) d d t | φ ε | 2 d x + 1 2 d d t Ω | Γ ξ ε | 2 d γ + q 6 2 d d t Ω | ξ ε | 2 d γ = q 4 2 d d t Ω | φ ε | 2 d x + p 4 Ω θ ε φ t ε d x + q 5 Ω f 2 φ t ε d x + Ω w 2 ξ t ε d γ .
Using Hölder’s inequality for the right-side terms p 4 q 1 p 3 Ω f 1 θ ε d x , p 4 q 1 Ω w 1 θ ε d γ , q 5 Ω f 2 φ t ε d x , and Ω w 2 ξ t ε d γ , we obtain
p 4 q 1 p 3 Ω f 1 θ ε d x 1 2 Ω | θ ε | 2 d x + p 4 q 1 p 3 2 Ω | f 1 | 2 d x ,
p 4 q 1 Ω w 1 θ ε d γ p 4 q 1 p 5 Ω | θ ε | 2 d γ + p 4 q 1 1 p 5 Ω | w 1 | 2 d γ ,
q 5 Ω f 2 φ t ε d x q 2 2 Ω | φ t ε | 2 d x + q 5 2 q 2 Ω | f 2 | 2 d x ,
Ω w 2 ξ t ε d γ q 2 2 Ω | ξ t ε | 2 d γ + 1 2 q 2 Ω | w 2 | 2 d γ .
Adding (35) and (36) and making use of the above, we obtain
p 4 q 1 p 1 2 d d t Ω | θ ε | 2 d x + p 4 q 1 p 1 2 d d t Ω | α ε | 2 d γ + p 4 q 1 p 2 K 1 m Ω | θ ε | 2 d x + q 2 2 Ω | φ t ε | 2 d x + q 2 2 Ω | ξ t ε | 2 d γ + q 3 2 K 2 m d d t Ω | φ ε | 2 d x + p 4 q 1 Ω | Γ α ε | 2 d γ + 1 2 d d t Ω | Γ ξ ε | 2 d γ + q 6 2 d d t Ω | ξ ε | 2 d γ q 4 2 d d t Ω | φ ε | 2 d x + 1 2 Ω | u ε | 2 d x + p 4 q 1 p 3 2 Ω | f 1 | 2 d x + q 5 2 q 2 Ω | f 2 | 2 d x + p 4 q 1 1 p 5 Ω | w 1 | 2 ( t , x ) d γ + 1 2 q 2 Ω | w 2 | 2 d γ ,
where the inequalities (15)1 and (16)1 are used, too.
Multiplying now (24)1 by 2 q 4 q 2 φ ε as shown above, we obtain
q 4 d d t Ω | φ ε | 2 d x + q 4 d d t Ω | ξ ε | 2 d γ + 2 q 4 q 2 q 3 Ω K 2 ( t , x , φ ε ) | φ ε | 2 d x + 2 q 4 q 2 Ω | Γ ξ ε | 2 d γ + 2 q 4 q 2 q 6 Ω | ξ ε | 2 d γ = 2 q 4 q 2 q 4 Ω | φ ε | 2 d x + 2 q 4 q 2 p 4 Ω θ ε φ ε d x + 2 q 4 q 2 q 5 Ω f 2 φ ε d x + 2 q 4 q 2 Ω w 2 φ ε d γ .
Again, using Hölder’s inequality for the right-side terms Ω θ ε φ ε d x , Ω f 2 φ ε d x , and Ω w 2 φ ε d γ , we have
2 q 4 q 2 p 4 Ω θ ε φ ε d x 2 q 4 2 q 2 p 4 Ω | θ ε | 2 d x + 2 q 4 2 q 2 p 4 Ω | φ ε | 2 d x ,
2 q 4 q 2 q 5 Ω f 2 φ ε d x 2 q 4 2 q 2 q 5 Ω | φ ε | 2 d x + 2 q 4 2 q 2 q 5 Ω | f 2 | 2 d x ,
2 q 4 q 2 Ω w 2 φ ε d γ 2 q 4 2 q 2 Ω | φ ε | 2 d γ + 2 q 4 2 q 2 Ω | w 2 | 2 d γ ,
and then, from (38), we obtain
q 4 d d t Ω | φ ε | 2 d x + q 4 d d t Ω | ξ ε | 2 d γ + 2 q 4 q 2 q 3 K 2 m Ω | φ ε | 2 d x + 2 q 4 q 2 Ω | Γ ξ ε | 2 d γ + 2 q 4 q 2 q 6 Ω | ξ ε | 2 d γ C ( q 2 , q 3 , q 4 , p 4 , q 5 ) Ω | θ ε | 2 d x + Ω | φ ε | 2 d x + Ω | f 2 | 2 d x + Ω | w 2 | 2 d γ ,
where the inequality (16)1 is used, too.
Adding (37) and (39), we obtain
t [ p 4 q 1 p 1 2 Ω | θ ε | 2 d x + p 4 q 1 p 1 2 Ω | α ε | 2 d γ + q 4 2 Ω | φ ε | 2 d x + q 4 + q 6 2 Ω | ξ ε | 2 d γ + q 3 2 K 2 m Ω | φ ε | 2 d x + 1 2 Ω | Γ ξ ε | 2 d γ ] + q 2 2 Ω | φ t ε | 2 d x + q 2 2 Ω | ξ t ε | 2 d γ + p 4 q 1 Ω | Γ α ε | 2 d γ + 2 q 4 q 2 Ω | Γ ξ ε | 2 d γ + 2 q 4 q 2 q 6 Ω | ξ ε | 2 d γ + p 4 q 1 p 2 K 1 m Ω | θ ε | 2 d x + 2 q 4 q 2 q 3 K 2 m Ω | φ ε | 2 d x C ( p 1 , p 2 , p 3 , p 4 , p 5 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 ) [ Ω | θ ε | 2 d x + Ω | φ ε | 2 d x + Ω | f 1 | 2 d x + Ω | f 2 | 2 d x + Ω | w 1 | 2 d γ + Ω | w 2 | 2 d γ ] .
Integrating the preceding on Q i ε , i = 0 , 1 , 2 , . . . , M ε 1 (i.e., on [ i ε , ( i + 1 ) ε ] , i = 0 , 1 , 2 , , M ε 1 ) and summing the inequalities obtained, we derive (see [18])
p 4 q 1 p 1 2 θ ε ( T , x ) L 2 ( Ω ) 2 + p 4 q 1 p 1 2 α ε ( T , x ) L 2 ( Ω ) 2 + q 4 2 φ ε ( T , x ) L 2 ( Ω ) 2 + q 4 + q 6 2 ξ ε ( T , x ) L 2 ( Ω ) 2 + q 3 2 K 2 m φ ε ( T , x ) L 2 ( Ω ) 2 + 1 2 Γ ξ ε ( T , x ) L 2 ( Ω ) 2 + 0 T [ q 2 2 φ t ε L 2 ( Ω ) 2 + q 2 2 ξ t ε L 2 ( Ω ) 2 + p 4 q 1 Γ α ε L 2 ( Ω ) 2 + 2 q 4 q 2 Γ ξ ε L 2 ( Ω ) 2 + 2 q 4 q 2 q 6 ξ ε L 2 ( Ω ) 2 + p 4 q 1 p 2 K 1 m θ ε L 2 ( Ω ) 2 + 2 q 4 q 2 q 3 K 2 m φ ε L 2 ( Ω ) 2 ] d t p 4 q 1 p 1 2 θ 0 L 2 ( Ω ) 2 + p 4 q 1 p 1 2 α 0 L 2 ( Ω ) 2 + q 4 2 φ 0 L 2 ( Ω ) 2 + q 4 2 ξ 0 L 2 ( Ω ) 2 + p 2 2 θ 0 L 2 ( Ω ) 2 + q 3 2 K m i n φ 0 L 2 ( Ω ) 2 + C ( p 1 , p 2 , p 3 , p 4 , p 5 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 ) { 0 T θ ε L 2 ( Ω ) 2 + φ ε L 2 ( Ω ) 2 d t + f 1 L 2 ( Q ) 2 + f 2 L 2 ( Q ) 2 + w 1 L 2 ( Σ ) 2 + w 2 L 2 ( Σ ) 2 } ,
where the inequalities (31) and (33) are used.
Applying the Gronwall inequality to the above inequality, we finally deduce
0 T { φ t ε L 2 ( Ω ) 2 + ξ t ε L 2 ( Ω ) 2 + θ ε L 2 ( Ω ) 2 + φ ε L 2 ( Ω ) 2 + Γ α ε L 2 ( Ω ) 2 + Γ ξ ε L 2 ( Ω ) 2 } d t C ,
where C > 0 is independent of ε and M ε .
Owing to (23)3, (24)3, and (34), we obtain
i = 0 M ε 1 θ ε ( i ε , x ) θ ε ( i ε , x ) L 2 ( Ω ) T L = C 1 ,
i = 0 M ε 1 φ ε ( i ε , x ) φ ε ( i ε , x ) L 2 ( Γ ) C 2 ,
where C 1 > 0 , C 2 > 0 are independent of M ε and ε . Adding (40)–(42), we derive
V 1 0 T θ ε + V 2 0 T φ ε + 0 T { φ t ε L 2 ( Ω ) 2 + ξ t ε L 2 ( Ω ) 2 + θ ε L 2 ( Ω ) 2 + φ ε L 2 ( Ω ) 2 + Γ α ε L 2 ( Ω ) 2 + Γ ξ ε L 2 ( Ω ) 2 } d t C ,
where C > 0 is independent on M ε and ε , while V 1 0 T θ ε and V 2 0 T φ ε stand for the variation of θ ε : [ 0 , T ] L 2 ( Ω ) and φ ε : [ 0 , T ] L 2 ( Ω ) , respectively.
Now, multiplying (23)1 by θ t ε , integrating over [ i ε , ( i + 1 ) ε ] , i = 0 , 1 , , M ε 1 , and involving Cauchy–Schwartz’s inequalities, Hölder’s inequality, Cauchy’s inequality, Gronwall–Bellman’s inequality, Green’s formula, as well as the relations (15)1 and (40), we finally obtain the estimate
0 T [ p 1 2 Ω ( θ t ε ) 2 d x + p 1 2 Ω ( α t ε ) 2 d γ + p 2 2 K 1 m d d t Ω | θ ε | 2 d x + 1 2 d d t Ω | Γ α ε | 2 d γ + p 5 2 d d t Ω | α ε | 2 d γ ] d s C ,
for all ε > 0 , where the constant C > 0 does not depend on M ε and ε .
Combining (43) with (44), we obtain
V 1 0 T θ ε + V 2 0 T φ ε + 0 T [ θ t ε L 2 ( Ω ) 2 + α t ε L 2 ( Ω ) 2 + φ t ε L 2 ( Ω ) 2 + ξ t ε L 2 ( Ω ) 2 + θ ε L 2 ( Ω ) 2 + φ ε L 2 ( Ω 2 ] d t C .
Since the injection of L 2 ( Ω ) into H 1 ( Ω ) is compact and { θ s ε ( s ) } , { φ s ε ( s ) } are bounded in L 2 ( Ω ) s [ 0 , T ] , we conclude that there exists a bounded variation function: θ * ( s ) B V ( [ 0 , T ] ; H 1 ( Ω ) ) , φ * ( s ) B V ( [ 0 , T ] ; H 1 ( Ω ) ) , respectively, and the subsequences θ ε ( s ) , φ ε ( s ) (see [17]) such that
θ ε ( s ) θ * ( s ) φ ε ( s ) φ * ( s ) strongly in H 1 ( Ω ) s [ 0 , T ] .
A similar reasoning carried out for { α s ε ( s ) } and { ξ s ε ( s ) } allows us to conclude the convergence
α ε ( s ) α * ( s ) ξ ε ( s ) ξ * ( s ) strongly in H 1 ( Ω ) s [ 0 , T ] .
Furthermore, from (45) we deduce that
θ ε θ * φ ε φ * weakly in H 1 ( Ω ) s [ 0 , T ] , α ε α * ξ ε ξ * weakly in H 1 ( Ω ) s [ 0 , T ] .
By the well-known embeddings,
H 1 ( Ω ) L 2 ( Ω ) H 1 ( Ω )   and   H 1 ( Ω ) L 2 ( Ω ) H 1 ( Ω ) ,
standard interpolation inequalities (see [17], p. 17) yield that > 0 , C ( ) > 0 such that
θ ε ( s ) θ * ( s ) L 2 ( Ω ) θ ε ( s ) θ * ( s ) H 1 ( Ω ) + C ( ) θ ε ( s ) θ * ( s ) H 1 ( Ω ) φ ε ( s ) φ * ( s ) L 2 ( Ω ) φ ε ( s ) φ * ( s ) H 1 ( Ω ) + C ( ) φ ε ( s ) φ * ( s ) H 1 ( Ω ) , α ε ( s ) α * ( s ) L 2 ( Ω ) α ε ( s ) α * ( s ) H 1 ( Ω ) + C ( ) α ε ( s ) α * ( s ) H 1 ( Ω ) ξ ε ( s ) ξ * ( s ) L 2 ( Ω ) ξ ε ( s ) ξ * ( s ) H 1 ( Ω ) + C ( ) ξ ε ( s ) ξ * ( s ) H 1 ( Ω ) ,
ε > 0 and s [ 0 , T ] , where C ( ) 0 as 0 .
Finally, relations (46)–(49) permit us to conclude that the assertion conducted in (30) holds true, ending the proof of Theorem 3.    □
Corollary 1. 
Assume θ 0 , φ 0 W p 2 2 p ( Ω ) , p 2 , with p 2 n θ 0 ( x ) Δ Γ θ 0 + p 5 θ 0 ( x ) = w 1 ( 0 , x ) , q 3 n φ 0 ( x ) Δ Γ φ 0 + q 6 φ 0 ( x ) = w 2 ( 0 , x ) on Ω and w 1 , w 2 W p 1 1 2 p , 2 1 p ( Σ ) . Then, ( θ * , α * ) , ( φ * , ξ * ) W Q × W Σ , θ * = α * and φ * = ξ * on Σ, is a weak solution of the nonlinear second-order parabolic systems (6) and (7).
The general framework of the numerical algorithm to compute the approximate solution of problems (6) and (7) (practically, the approximate solution to the nonlinear second-order boundary value problem (1)–(3)) via the fractional-step scheme may be demonstrated as follows:
  • Begin alg-frac _sec-ord _u+varphi_dbc
  • i : = 0 θ 0 from (23)3 and φ 0 from (25)3;
  •   For i : = 0 to M ε 1 do
  •   Compute z ( ε , · ) from (25);
  •    φ ε ( i ε , · ) : = z ( ε , · ) ;
  •    α ε ( i ε , · ) : = θ ε ( i ε , · ) ;
  •    ξ ε ( i ε , · ) : = φ ε ( i ε , · ) ;
  •   Compute ( θ ε ( ( i + 1 ) ε , · ) , φ ε ( ( i + 1 ) ε , · ) ) solving the linear system
  •   (23)1−2 + (24)1−2;
  •   End-for;
  • End.
An example of numerical implementation to alg-frac _sec-ord _u+varphi_dbc, considering a particular case of parameters p 1 , p 2 , p 3 , p 4 , p 5 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , K 1 = K 2 = 1 , can be found in [18].

5. Conclusions

The main problem studied in this paper is a nonlinear second-order parabolic system of coupled PDEs (1), with the principal part in divergence form for both unknown functions u, φ and subject to in-homogeneous dynamic boundary conditions (2). Provided that the initial and boundary data meet appropriate regularity as well as compatibility conditions, it is proven the well-posedness of a classical solution to the nonlinear problem in this new formulation (Theorem 2). Precisely, the Leray–Schauder principle, as well as the L p theory of linear and quasi-linear parabolic equations, via Lemma 7.4 (see [18] and reference therein), is applied to prove the qualitative properties of solutions θ ( t , x ) , α ( t , x ) , φ ( t , x ) , ξ ( t , x ) . Moreover, the a priori estimates are made in L p ( Q ) and L p ( Σ ) , which permit us to derive regularity properties of higher order for θ , α , φ , ξ , that is, θ ( t , x ) , α ( t , x ) W p 1 , 2 ( Q ) × W p 1 , 2 ( Σ ) , φ ( t , x ) , ξ ( t , x ) W ν 1 , 2 ( Q ) × W p 1 , 2 ( Σ ) , ν = min { q , μ } (see [17]).
Let us remark that, because of the presence of the terms K 1 ( t , x , θ ( t , x ) ) and K 2 ( t , x , φ ( t , x ) ) , the nonlinear operator S in (20) does not represent the gradient of the energy functional. Therefore, the new proposed second-order nonlinear systems (6) and (7) cannot be obtained from the minimization of any energy cost functional, i.e., (1) is not a variational PDE model.
Next, an iterative scheme of fractional-step type is introduced to approximate the problems (6) and (7). The convergence result is established for the proposed numerical scheme, and a conceptual numerical algorithm, alg-frac _sec-ord _u+varphi_dbc, is formulated in the end. See [17] and references therein for an example of numerical implementation to the conceptual algorithm alg-frac_sec-ord_u+varphi_dbc.
The qualitative results obtained here can be used later in the quantitative approaches of the mathematical model (1)–(3) as well as in the study of distributed and/or boundary nonlinear optimal control problems governed by such a nonlinear problem. Numerical implementation of the conceptual algorithm, alg-frac _sec-ord _u+varphi_dbc, as well as various simulations regarding the physical phenomena described by nonlinear second-order parabolic system (1), correspondingly, especially, to the different choice of mobility functions K 1 ( t , x , θ ( t , x ) ) and K 2 ( t , x , φ ( t , x ) ) , (see [2]), represent a matter for further investigation.   

Author Contributions

Conceptualization, C.M.; Validation, C.F. and S.-D.P.; Formal analysis, C.F. and S.-D.P.; Investigation, S.-D.P.; Resources, S.-D.P.; Writing—original draft, C.M.; Visualization, C.F., C.M. and S.-D.P.; Project administration, C.M.; Funding acquisition, C.F. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Berinde, V.; Miranville, A.; Moroşanu, C. A qualitative analysis of a second-order anisotropic phase-field transition system endowed with a general class of nonlinear dynamic boundary conditions. Discret. Contin. Dyn. Syst. Ser. S 2023, 16, 148–186. [Google Scholar] [CrossRef]
  2. Moroşanu, C.; Pavăl, S. Rigorous Mathematical Investigation of a Nonlocal and Nonlinear Second-Order Anisotropic Reaction-Diffusion Model: Applications on Image Segmentation. Mathematics 2021, 9, 91. [Google Scholar] [CrossRef]
  3. Ovono, A.A. Numerical approximation of the phase-field transition system with non-homogeneous Cauchy-Neumann boundary conditions in both unknown functions via fractional steps methods. J. Appl. Anal. Comput. (JAAC) 2013, 3, 377–397. [Google Scholar]
  4. Barbu, V.; Iannelli, M. Approximating some non–linear equations by a Fractional step scheme. Differ. Integral Equ. 1993, 6, 15–26. [Google Scholar]
  5. Berti, V.; Fabrizio, M.; Giorgi, C. A three-dimensional phase transition model in ferromagnetism: Existence and uniqueness. J. Math. Anal. Appl. 2009, 355, 661–674. [Google Scholar] [CrossRef]
  6. Boldrini, J.L.; Caretta, B.M.C.; Fernández-Cara, E. Analysis of a two-phase field model for the solidification of an alloy. J. Math. Anal. Appl. 2009, 357, 25–44. [Google Scholar] [CrossRef]
  7. Brézis, H.; Pazy, A. Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal. 1972, 9, 63–74. [Google Scholar] [CrossRef]
  8. Caginalp, G. An analysis of a phase-field model of a free boundary. Arch. Rational Mech. Anal. 1986, 92, 205–245. [Google Scholar] [CrossRef]
  9. Cherfils, L.; Miranville, A. On the Caginalp system with dynamic boundary conditions and singular potentials. Appl. Math. 2009, 54, 89–115. [Google Scholar] [CrossRef]
  10. Conti, M.; Gatti, S.; Miranville, A. Attractors for a Caginalp model with a logarithmic potential and coupled dynamic boundary conditions. Anal. Appl. 2013, 11, 1350024. [Google Scholar] [CrossRef]
  11. Grasselli, M.; Miranville, A.; Pata, V.; Zelik, S. Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math. Nachr. 2007, 280, 1475–1509. [Google Scholar] [CrossRef]
  12. Miranville, A. Some mathematical models in phase transition. Discret. Contin. Dyn. Syst. Ser. S 2014, 7, 271–306. [Google Scholar] [CrossRef]
  13. Pavel, N.H. Differential Equations, flow invariance and applications. In Research Notes in Mathematics; Pitman Advanced Publishing Program: Pitman, NJ, USA, 1984; Volume 113. [Google Scholar]
  14. Sprekels, J.; Zheng, S. Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions. J. Math. Anal. Appl. 2003, 279, 97–110. [Google Scholar] [CrossRef]
  15. Tănase, G. A first-order fractional–steps–type method to approximate a nonlinear reaction–diffusion equation with homogeneous Cauchy–Neumann boundary conditions. Discret. Contin. Dyn. Syst. Ser. 2024. [Google Scholar] [CrossRef]
  16. Penrose, O.; Fife, P.C. Thermodynamically consistent models of phase-field type for kinetics of phase transitions. Phys. D 1990, 43, 44–62. [Google Scholar] [CrossRef]
  17. Moroşanu, C. Analysis and Optimal Control of Phase-Field Transition System: Fractional Steps Methods; Bentham Science Publishers: Seoul, Republic of Korea, 2012; 353p, ISBN 978-1-60805-350-6. [Google Scholar] [CrossRef]
  18. Fetecău, C.; Moroşanu, C. Fractional Step Scheme to Approximate a Non-Linear Second-Order Reaction–Diffusion Problem with Inhomogeneous Dynamic Boundary Conditions. Axioms 2023, 12, 406. [Google Scholar] [CrossRef]
  19. Gatti, S.; Miranville, A. Asymptotic behavior of a phase-field system with dynamic boundary conditions. In Differential Equations: Inverse and Direct Problems; Favini, A., Lorenzi, A., Eds.; Lecture Notes Pure and Applied Mathematics; Chapman & Hall: Boca Raton, FL, USA, 2006; Volume 521, pp. 149–170. [Google Scholar]
  20. Kobayashi, Y. Product formula for nonlinear semigroups in Hilbert spaces. Proc. Jpn. Acad. 1982, 58, 425–428. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Fetecău, C.; Moroşanu, C.; Pavăl, S.-D. On the Convergence of an Approximation Scheme of Fractional-Step Type, Associated to a Nonlinear Second-Order System with Coupled In-Homogeneous Dynamic Boundary Conditions. Axioms 2024, 13, 286. https://doi.org/10.3390/axioms13050286

AMA Style

Fetecău C, Moroşanu C, Pavăl S-D. On the Convergence of an Approximation Scheme of Fractional-Step Type, Associated to a Nonlinear Second-Order System with Coupled In-Homogeneous Dynamic Boundary Conditions. Axioms. 2024; 13(5):286. https://doi.org/10.3390/axioms13050286

Chicago/Turabian Style

Fetecău, Constantin, Costică Moroşanu, and Silviu-Dumitru Pavăl. 2024. "On the Convergence of an Approximation Scheme of Fractional-Step Type, Associated to a Nonlinear Second-Order System with Coupled In-Homogeneous Dynamic Boundary Conditions" Axioms 13, no. 5: 286. https://doi.org/10.3390/axioms13050286

APA Style

Fetecău, C., Moroşanu, C., & Pavăl, S. -D. (2024). On the Convergence of an Approximation Scheme of Fractional-Step Type, Associated to a Nonlinear Second-Order System with Coupled In-Homogeneous Dynamic Boundary Conditions. Axioms, 13(5), 286. https://doi.org/10.3390/axioms13050286

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop