Next Article in Journal
Analytic Solutions for Hilfer Type Fractional Langevin Equations with Variable Coefficients in a Weighted Space
Previous Article in Journal
Numerical Investigation of Some Reductions for the Gatenby–Gawlinski Model
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures

1
School of Science, Jimei University, Xiamen 361021, China
2
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(5), 282; https://doi.org/10.3390/axioms13050282
Submission received: 13 March 2024 / Revised: 18 April 2024 / Accepted: 19 April 2024 / Published: 23 April 2024
(This article belongs to the Section Mathematical Physics)

Abstract

:
By using the classical Lie algebra, the stationary zero curvature equation, and the Lenard recursion equations, we obtain the non-isospectral TD hierarchy. Two kinds of expanding higher-dimensional Lie algebras are presented by extending the classical Lie algebra. By solving the expanded non-isospectral zero curvature equations, the multi-component non-isospectral TD hierarchies are derived. The Hamiltonian structure for one of them is obtained by using the trace identity.

1. Introduction

Nonlinear integrable evolution equations are important in many application fields, such as mathematics and theoretical physics. Deriving the nonlinear integrable evolution equations is a key subject. Magri [1] proposed that integrable systems can be obtained by applying Lax representation and zero curvature representation. Tu [2] found another effective method to generate integrable hierarchies of equations and the corresponding Hamiltonian structures. Ma [3,4] called this method the Tu scheme. By applying the Tu scheme, many important isospectral integrable systems were obtained [5,6,7,8,9,10,11,12]. It is obvious that non-isospectral equations play a significant role in mathematics and theoretical physics. Ma [13] offered a universally applicable method of constructing Lax representations for isospectral and non-isospectral hierarchies of evolution equations. In [14], he gave a systematic method to construct integrable systems from the zero curvature representation non-isospectral flows associated with a given isospectral hierarchy of integrable systems. By using the Lenard recursive scheme, Qiao [15] displayed the hierarchies of generalized nonlinear evolution equations associated with the Harry-Dym spectral problem and constructed the corresponding generalized Lax representations by solving a key operator equation. Based on the methods, a large number of non-isospectral integrable systems are considered [16,17,18].
As we all know, integrable couplings originated from an investigation on soliton equations and have received increasing attention. The authors in [19] constructed a suitable transformation of Lax pairs to obtain the integrable coupling of TD hierarchy, which is called the direct method (see [20] for reference). Ma once provided a method to construct integrable couplings associated with the non-semisimple Lie algebra, which has the triangular block matrix form
M 1 ( m 1 , m 2 ) = m 1 0 m 2 m 1 ,
where m 1 and m 2 are two arbitrary square matrices of the same order. By applying this non-semi-simple Lie algebra, many isospectral or non-isospectral integrable couplings have been deduced [21,22,23,24,25]. Wang [26] extended the above non-semi-simple Lie algebra to generalized non-semi-simple Lie algebra, which has the following form:
M 2 ( m 1 , m 2 ) = m 1 ε m 2 m 2 m 1 ,
where ε is a constant. The generalized non-semi-simple Lie algebra, which depends on epsilon in a non-trivial way, is applied to construct the integrable couplings of isospectral and non-isopectral problems, the generalized integrable coupling of the MKdV isospectral problem and the Ablowitz-Kaup-Newell-Segur non-isopectral problem were constructed. Based on generalized non-semi-simple Lie algebra, a series of integrable coupling systems were obtained, such as two non-isospectral hierarchies of the Ablowitz-Kaup-Newell-Segur type and Kaup-Newell type, non-isospectral generalized nonlinear Schrödinger hierarchies [27]. Motivated by the generalized non-semi-simple Lie algebra, a new non-semi-simple Lie algebra that can extend the classical spectral problems to the multi-component spectral problems was determined. Wang [28] extended the integrable coupling MKdV isospectral and Ablowitz-Kaup-Newell-Segur non-isospectral hierarchies to the N-dimensional isospectral MKdV and non-isospectral Ablowitz-Kaup-Newell-Segur hierarchies. N-dimensional non-isospectral KdV and non-isospectral generalized nonlinear Schrödinger hierarchies were generated, respectively, in [27,29].
The rest of this papper is organized as follows. In Section 2, with the help of the simple Lie algebra and the non-isospectral problem, we derive a non-isospectral TD hierarchy from zero curvature equations, and the Bi-Hamiltonian structure is presented by making use of the trace identity. In Section 3, using generalized non-semi-simple Lie algebra, by considering the extended non-isospectral problem and solving the extended zero curvature equation, the integrable coupling of a non-isospectral TD hierarchy is obtained. By applying Z 2 ε trace identity, we obtained the corresponding Bi-Hamiltonian structures. In Section 4, we present a multi-component non-semi-simple Lie algebra that can be used to generate higher-dimensional isospectral and non-isospectral integrable hierarchies. We consider the special case of ε = 0 and derive the multi-component non-isospectral TD integrable coupling hierarchy by solving the enlarged zero curvature equations, for which the Bi-Hamiltonian structures are obtained. Section 5 provides the conclusions and discussions.

2. A Nonisospectral TD Integrable Hierarchy

Denote a simple Lie algebra, A, as follows:
A = span { h 1 , h 2 , h 3 , h 4 } .
The basis of Lie algebra can be constituted by the following matrices:
h 1 = 1 0 0 0 , h 2 = 0 0 0 1 , h 3 = 0 1 0 0 , h 4 = 0 0 1 0 ,
and this satisfies the commutator relations
[ h 1 , h 2 ] = 0 , [ h 1 , h 3 ] = [ h 2 , h 3 ] = h 3 , [ h 1 , h 4 ] = [ h 2 , h 4 ] = h 4 , [ h 3 , h 4 ] = h 1 h 2 ,
where [ a , b ] = a b b a , a , b A .
We consider the 2 × 2 matrix spectral problem:
ψ x = M ψ , M = λ + r q q λ = λ h 1 + λ h 2 + r h 1 + q ( h 3 + h 4 ) , ψ t = N ψ , N = a b c a = a h 1 + a h 2 + b h 3 + c h 4 , λ t = m 0 k m ( t ) λ m ,
where ψ = ( ψ 1 , ψ 2 ) T , u = ( q , r ) T .
To derive a nonlinear integrable hierarchy, the following stationary zero curvature equation needs to be solved
N x = M λ λ t + [ M , N ] .
By substituting M and N in (2) into (3), we obtain
a x = q ( c b ) λ t , b x = 2 b λ + r b 2 q a , c x = 2 c λ r c + 2 q a .
By assuming a = m 0 a m λ m , b = m 0 b m λ m , c = m 0 c m λ m , inserting them into (4), and comparing the same powers of λ , we have
a m x = q ( c m b m ) k m ( t ) , b m x = 2 b m + 1 + r b m 2 q a m , c m x = 2 c m + 1 r c m + 2 q a m ,
which leads to the following recurrence relations:
a m = x 1 ( q c m q b m ) k m ( t ) x , b m + 1 = 1 2 ( r b m b m x 2 q a m ) , c m + 1 = 1 2 ( r c m + c m x 2 q a m ) .
By taking the initial conditions
a 0 = 1 , b 0 = 0 , c 0 = 0 k 0 = 0 ,
and imposing the integrable conditions
a i | q = r = 0 = 0 , b i | q = r = 0 = 0 , c i | q = r = 0 = 0 , i 0 ,
{ a i , b i , c i | i > 0 } can be gained from the relations in (6). First, we list three sets as follows:
b 1 = q , c 1 = q , a 1 = k 1 ( t ) x , b 2 = q k 1 ( t ) x + 1 2 ( r q q x ) , c 2 = q k 1 ( t ) x + 1 2 ( r q + q x ) , a 2 = 1 2 q 2 k 2 ( t ) x , b 3 = q k 2 ( t ) x + 1 2 ( r q x x q x q ) k 1 ( t ) + 1 4 ( r 2 q r q x ( r q ) x + q x x ) 1 2 q 3 , c 3 = q k 2 ( t ) x + 1 2 ( r q x + x q x + q ) k 1 ( t ) + 1 4 ( r 2 q + r q x + ( r q ) x + q x x ) 1 2 q 3 , a 3 = 1 q ( x q x + q ) k 1 ( t ) + 1 2 r q 2 k 3 ( t ) x , .
Denoting
N + ( n ) = m = 0 n ( a m ( h 1 + h 2 ) λ n m + b m h 3 λ n m + c m h 4 λ n m ) , λ t , + ( n ) = m = 0 n k m ( t ) λ n m ,
Then, (3) can be decomposed as
M λ λ t , + ( n ) N x , + ( n ) + M , N + ( n ) = M λ λ t , ( n ) + N x , ( n ) M , N ( n ) .
The gradations of the left-hand side of (7) are obtained as follows:
deg M λ λ t , + ( n ) 0 , deg N + ( n ) 0 , deg M , N + ( n ) 0 .
One can find that the minimum gradation of the left-hand side of (7) is zero. The maximum gradation of the right-hand side of (7) has no choice but to be zero. Thus, we obtain the following equation by taking the gradations of these terms to be zero:
M λ λ t , + ( n ) N + , x ( n ) + M , N + ( n ) = 2 b n + 1 h 3 2 c n + 1 h 4 .
Then, we take the modified term Δ n = q 1 ( b n + 1 + c n + 1 ) h 1 so that for N ( n ) = N + ( n ) + Δ n . By solving the non-isospectral zero curvature equation
M u u t + M λ λ t ( n ) N x ( n ) + M , N ( n ) = 0 ,
we obtain the well-known non-isospectral TD hierarchy:
q t n = c n + 1 b n + 1 = q 1 ( a n + 1 + k n + 1 ( t ) ) , r t n = [ q 1 ( c n + 1 + b n + 1 ) ] .
Here, we have used the first equation of (5).
The first nontrivial system in the hierarchy (8) is as follows:
q t 2 = ( x q x + q ) k 1 ( t ) + 1 2 ( r q x + ( r q ) x ) , r t 2 = 2 k 2 ( t ) + ( x r x + r ) k 1 ( t ) + 1 2 ( r 2 + q 1 q x x 2 q 2 ) x .
Set k 1 ( t ) = k 2 ( t ) = 0 , t = 2 t ˜ , and (9) reduces to
q t ˜ 2 = r q x + ( r q ) x , r t ˜ 2 = ( r 2 + q 1 q x x 2 q 2 ) x ,
which is the TD equation [2].
When n = 3 , (8) becomes
q t 3 = ( 1 2 x q r x + r q + x r q x ) k 1 ( t ) + ( x q x + q ) k 2 ( t ) + 1 4 ( q x x x 6 q 2 q x + 3 r ( r q ) x ) , r t 3 = 2 k 3 ( t ) + ( x r x + r ) k 2 ( t ) + ( 1 2 x q 1 q x x + 1 2 x r 2 + q 1 q x 2 1 x q q x 2 1 q 2 ) k 1 ( t ) + 1 4 ( r 3 + 3 q 1 r x q x + 3 r q 1 q x x + r x x 6 q 2 r ) x .
Let k 1 ( t ) = k 2 ( t ) = k 3 ( t ) = 0 , r = 0 , t = 4 t ˜ , q = i q ˜ , (11) reduces to
q ˜ t ˜ 3 + q ˜ x x x + 6 q ˜ 2 q ˜ x = 0 ,
which is the MKdV equation.

Bi-Hamiltonian Structures

In this subsection, we apply the trace identity discussed in [2] to consider the Bi-Hamiltonian structure of the nonlinear integrable hierarchy (8).
We calculate the following quantities:
M λ = h 1 + h 2 , M q = h 3 + h 4 , M r = h 1 ,
tr N M λ = 2 a , tr N M q = b + c , tr N M r = a .
Bearing in mind that the trace identity
δ δ u tr N M λ d x = λ γ λ λ γ tr N M q , tr N M r T ,
we arrive at
δ δ u 2 a d x = λ γ λ λ γ b + c a .
By comparing the coefficients of λ m 1 in the above equation, we obtain
δ δ u 2 a m + 1 d x = ( γ m ) b m + c m a m .
We figured out γ = 0 via inserting m = 1 into the above equation. Thus, we have
δ δ u a m + 2 m + 1 d x = 1 2 b m + 1 + c m + 1 a m + 1 = δ H m + 1 δ u ,
where H m + 1 = a m + 2 m + 1 d x . A recurrence relationship is generated by a direct calculation, as follows
b m + 1 + c m + 1 a m + 1 = L b m + c m a m + R k m ( t ) + R 0 k m + 1 ( t ) , m 0 ,
where
L = 1 2 r q 1 4 q 1 q 1 r , R = 1 2 q 1 1 r , R 0 = 0 x .
According to (12) and (13), the non-isospectral TD hierarchy (8) can be represented as the following:
q r t n = q 1 ( a n + 1 + k n + 1 ( t ) ) [ q 1 ( b n + 1 + c n + 1 ) ] = J b n + 1 + c n + 1 a n + 1 + R 1 k n + 1 ( t ) = : 2 J δ H n + 1 δ u + R 1 k n + 1 ( t ) = J 2 L δ H n δ u + R k n ( t ) + R 0 k n + 1 ( t ) + R 1 k n + 1 ( t ) = : Q δ H n δ u + J R k n ( t ) + ( J R 0 + R 1 ) k n + 1 ( t ) = J L n b 1 + c 1 a 1 + i = 0 n J L n i ( R k i ( t ) + R 0 k i + 1 ( t ) ) + R 1 k n + 1 ( t ) ,
with R 1 and the Hamiltonian operators J and Q as follows:
R 1 = q 1 0 , J = 0 q 1 q 1 0 , Q = q 1 r q 1 r ( q 1 ) 2 4 .

3. An Integrable Coupling of the TD Non-Isospectral Hierarchy

Similar to [26], in terms of the definition of Lie algebra, the Lie algebra A can be enlarged into a higher-dimensional Lie algebra.
The enlarged Lie algebra A 12 = span { h i } i = 1 8 has the following basis:
h ˜ 1 = h 1 0 0 h 1 = 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 , h ˜ 2 = h 2 0 0 h 2 = 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 ,
h ˜ 3 = h 3 0 0 h 3 = 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 , h ˜ 4 = h 4 0 0 h 4 = 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 , h ˜ 5 = 0 ε h 1 h 1 0 = 0 0 ε 0 0 0 0 0 1 0 0 0 0 0 0 0 , h ˜ 6 = 0 ε h 2 h 2 0 = 0 0 0 0 0 0 0 ε 0 0 0 0 0 1 0 0 , h ˜ 7 = 0 ε h 3 h 3 0 = 0 0 0 ε 0 0 0 0 0 1 0 0 0 0 0 0 , h ˜ 8 = 0 ε h 4 h 4 0 = 0 0 0 0 0 0 ε 0 0 0 0 0 1 0 0 0 ,
where the commutator is given by
[ h ˜ 1 , h ˜ 2 ] = 0 , [ h ˜ 1 , h ˜ 3 ] = h ˜ 3 , [ h ˜ 1 , h ˜ 4 ] = h ˜ 4 , [ h ˜ 1 , h ˜ 5 ] = 0 , [ h ˜ 1 , h ˜ 6 ] = 0 , [ h ˜ 1 , h ˜ 7 ] = h ˜ 7 , [ h ˜ 1 , h ˜ 8 ] = h ˜ 8 , [ h ˜ 2 , h ˜ 3 ] = h ˜ 3 , [ h ˜ 2 , h ˜ 4 ] = h ˜ 4 , [ h ˜ 2 , h ˜ 5 ] = 0 , [ h ˜ 2 , h ˜ 6 ] = 0 , [ h ˜ 2 , h ˜ 7 ] = h ˜ 7 , [ h ˜ 2 , h ˜ 8 ] = h ˜ 8 , [ h ˜ 3 , h ˜ 4 ] = h ˜ 1 h ˜ 2 , [ h ˜ 3 , h ˜ 5 ] = h ˜ 7 , [ h ˜ 3 , h ˜ 6 ] = h ˜ 7 , [ h ˜ 3 , h ˜ 7 ] = 0 , [ h ˜ 3 , h ˜ 8 ] = h ˜ 5 h ˜ 6 , [ h ˜ 4 , h ˜ 5 ] = h ˜ 8 , [ h ˜ 4 , h ˜ 6 ] = h ˜ 8 , [ h ˜ 4 , h ˜ 7 ] = h ˜ 5 + h ˜ 6 , [ h ˜ 4 , h ˜ 8 ] = 0 , [ h ˜ 5 , h ˜ 6 ] = 0 , [ h ˜ 5 , h ˜ 7 ] = ε h ˜ 3 , [ h ˜ 5 , h ˜ 8 ] = ε h ˜ 4 , [ h ˜ 6 , h ˜ 7 ] = ε h ˜ 3 , [ h ˜ 6 , h ˜ 8 ] = ε h ˜ 4 , [ h ˜ 7 , h ˜ 8 ] = ε ( h ˜ 1 h ˜ 2 ) .
Assume G 1 = span { h ˜ 1 , h ˜ 2 , h ˜ 3 , h ˜ 4 } , G 2 = span { h ˜ 5 , h ˜ 6 , h ˜ 7 , h ˜ 8 } , then A 12 = G 1 G 2 . It is obvious that
[ G 1 , G 1 ] G 1 , [ G 1 , G 2 ] G 2 , [ G 2 , G 2 ] G 1 .
We introduce an enlarged non-isospectral problem:
ψ x = U ψ , U = λ h ˜ 1 + λ h ˜ 2 + r 1 h ˜ 1 + q 1 h ˜ 3 + q 1 h ˜ 4 λ h ˜ 5 + λ h ˜ 6 + r 2 h ˜ 5 + q 2 h ˜ 7 + q 2 h ˜ 8 , ψ t = V ψ , V = a h ˜ 1 a h ˜ 2 + b h ˜ 3 + c h ˜ 4 + d h ˜ 5 d h ˜ 6 + e h ˜ 7 + f h ˜ 8 , λ t = m 0 k m ( t ) λ m ,
where
U = U 1 ε U 2 U 2 U 1 , V = V 1 ε V 2 V 2 V 1 , U 1 = λ h 1 + λ h 2 + r 1 h 1 + q 1 h 3 + q 1 h 4 , U 2 = λ h 1 + λ h 2 + r 2 h 1 + q 2 h 3 + q 2 h 4 , V 1 = a h 1 a h 2 + b h 3 + c h 4 , V 2 = a ^ h 1 a ^ h 2 + b ^ h 3 + c ^ h 4 .
and u ˜ = ( q 1 , r 1 , q 2 , r 2 ) T . Choosing a = m 0 a m λ m , b = m 0 b m λ m , c = m 0 c m λ m , a ^ = m 0 a ^ m λ m , b ^ = m 0 b ^ m λ m , c ^ = m 0 c ^ m λ m , and solving the stationary zero curvature equation
V x = U λ λ t + [ U , V ] ,
we have
a m x = q 1 ( c m b m ) + ε q 2 ( c ^ m b ^ m ) k m ( t ) , b m x = 2 b m + 1 2 ε b ^ m + 1 + r 1 b m + ε r 2 b ^ m 2 q 1 a m 2 ε q 2 a ^ m , c m x = 2 c m + 1 + 2 ε c ^ m + 1 r 1 c m ε r 2 c ^ m + 2 q 1 a m + 2 ε q 2 a ^ m , a ^ m x = q 1 ( c ^ m b ^ m ) + q 2 ( c m b m ) k m ( t ) , b ^ m x = 2 b m + 1 2 b ^ m + 1 + r 1 b ^ m + r 2 b m 2 q 1 a ^ m 2 q 2 a m , c ^ m x = 2 c m + 1 + 2 c ^ m + 1 r 1 c ^ m r 2 c m + 2 q 1 a ^ m + 2 q 2 a m .
A straightforward computation yields the following recursion equations:
a m = 1 [ q 1 ( c m b m ) + ε q 2 ( c ^ m b ^ m ) ] k m ( t ) x , b m + 1 = 1 2 ( ε 1 ) [ b m x ε b ^ m x + 2 q 1 ( a m ε a ^ m ) r 1 ( b m ε b ^ m ) + ε ( 2 q 2 ( a ^ m a m ) r 2 ( b ^ m b m ) ) ] , c m + 1 = 1 2 ( ε 1 ) [ ε c ^ m x c m x + 2 q 1 ( a m ε a ^ m ) r 1 ( c m ε c ^ m ) + ε ( 2 q 2 ( a ^ m a m ) r 2 ( c ^ m c m ) ) ] , a ^ m = 1 [ q 1 ( c ^ m b ^ m ) + q 2 ( c m b m ) ] k m ( t ) x , b ^ m + 1 = 1 2 ( ε 1 ) [ b ^ m x b m x + 2 q 2 ( a m ε a ^ m ) r 2 ( b m ε b ^ m ) + 2 q 1 ( a ^ m a m ) r 1 ( b ^ m b m ) ] , c ^ m + 1 = 1 2 ( ε 1 ) [ c m x c ^ m x + 2 q 2 ( a m ε a ^ m ) r 2 ( c m ε c ^ m ) + 2 q 1 ( a ^ m a m ) r 1 ( c ^ m c m ) ] .
Assuming
a 0 = 1 , b 0 = 0 , c 0 = 0 , k 0 = 0 , a ^ 0 = 1 , b ^ 0 = 0 , c ^ 0 = 0 ,
then (18) gives rise to
b 1 = q 1 , c 1 = q 1 , b ^ 1 = q 2 , c ^ 1 = q 2 , a 1 = k 1 ( t ) x , a ^ 1 = k 1 ( t ) x , b 2 = q 1 k 1 ( t ) x + 1 2 ( ε 1 ) [ q 1 x ε q 2 x r 1 ( q 1 ε q 2 ) ε r 2 ( q 2 q 1 ) ] , c 2 = q 1 k 1 ( t ) x + 1 2 ( ε 1 ) [ ε q 2 x q 1 x r 1 ( q 1 ε q 2 ) ε r 2 ( q 2 q 1 ) ] , b ^ 2 = q 2 k 1 ( t ) x + 1 2 ( ε 1 ) [ q 2 x q 1 x r 2 ( q 1 ε q 2 ) r 1 ( q 2 q 1 ) ] , c ^ 2 = q 2 k 1 ( t ) x + 1 2 ( ε 1 ) [ q 1 x q 2 x r 2 ( q 1 ε q 2 ) r 1 ( q 2 q 1 ) ] , a 2 = 1 2 ( ε 1 ) [ q 1 2 + ε q 2 2 + 2 ε q 2 ( q 1 q 2 ) ] k 2 ( t ) x , a ^ 2 = 1 2 ( ε 1 ) [ q 1 2 ε q 2 2 + 2 q 2 ( ε q 2 q 1 ) ] k 2 ( t ) x , .
Note that
V + ( n ) = a m h ˜ 1 λ n m a m h ˜ 2 λ n m + b m h ˜ 3 λ n m + c m h ˜ 4 λ n m + a ^ m h ˜ 5 λ n m a ^ m h ˜ 6 λ n m + b ^ m h ˜ 7 λ n m + c ^ m h ˜ 8 λ n m ,
then, we have
V + , x ( n ) + U λ λ t , + ( n ) + U , V + ( n ) = V , x ( n ) U λ λ t , ( n ) U , V ( n ) = 2 ( b n + 1 + ε b ^ n + 1 ) h ˜ 3 2 ( c n + 1 + ε c ^ n + 1 ) h ˜ 4 + 2 ( b n + 1 + b ^ n + 1 ) h ˜ 7 2 ( c n + 1 + c ^ n + 1 ) h ˜ 8 .
Letting
V ( n ) = V + ( n ) + Δ ˜ n
and the modified term
Δ ˜ n = [ q 1 ( b n + 1 + ε b ^ n + 1 + c n + 1 + ε c ^ n + 1 ) ε q 2 ( b n + 1 + b ^ n + 1 + c n + 1 + c ^ n + 1 ) ] h ˜ 1 q 1 2 ε q 2 2 + [ q 1 ( b n + 1 + b ^ n + 1 + c n + 1 + c ^ n + 1 ) q 2 ( b n + 1 + ε b ^ n + 1 + c n + 1 + ε c ^ n + 1 ) ] h ˜ 5 q 1 2 ε q 2 2 ,
the non-isospectral zero curvature equation
U t n + U λ λ t ( n ) V x ( n ) + U , V ( n ) = 0 ,
gives the integrable coupling of non-isospectral TD hierarchy
q 1 t n = c n + 1 + ε c ^ n + 1 b n + 1 ε b ^ n + 1 = q 1 ( a n , x + ε a ^ n , x ) ε q 2 ( a n , x + a ^ n , x ) + ( q 1 ε q 2 ) k n ( t ) + ε ( q 1 q 2 ) k n ( t ) q 1 2 ε q 2 2 , r 1 t n = q 1 ( b n + 1 + ε b ^ n + 1 + c n + 1 + ε c ^ n + 1 ) ε q 2 ( b n + 1 + b ^ n + 1 + c n + 1 + c ^ n + 1 ) q 1 2 ε q 2 2 , q 2 t n = c n + 1 + c ^ n + 1 b n + 1 b ^ n + 1 = q 1 ( a n , x + a ^ n , x ) q 2 ( a n , x + ε a ^ n , x ) + ( q 1 q 2 ) k n ( t ) + ( q 1 ε q 2 ) k n ( t ) q 1 2 ε q 2 2 , r 2 t n = q 1 ( b n + 1 + b ^ n + 1 + c n + 1 + c ^ n + 1 ) q 2 ( b n + 1 + ε b ^ n + 1 + c n + 1 + ε c ^ n + 1 ) q 1 2 ε q 2 2 .
When n = 2 , (19) leads to
q 1 , t 2 = ( x q 1 , x + q 1 ) k 1 ( t ) + 1 2 ( ε 1 ) 2 r 1 ( ε q 2 , x q 1 , x ) + 2 ε r 2 ( q 1 , x q 2 , x ) + q 1 ( ε r 2 , x r 1 , x ) + ε q 2 ( r 1 , x r 2 , x ) , r 1 , t 2 = 2 k 2 ( t ) + ( r 1 + x r 1 , x ) k 1 ( t ) + 1 2 ( ε 1 ) 2 ε r 1 r 2 r 1 2 ε r 2 2 4 ε q 1 q 2 q 1 ( q 1 , x x ε q 2 , x x ) + ε q 2 ( q 1 , x x q 2 , x x ) + 2 ε 2 q 2 4 2 q 1 4 q 1 2 ε q 2 2 , q 2 , t 2 = ( x q 2 , x + q 2 ) k 1 ( t ) + 1 2 ( ε 1 ) 2 r 1 ( q 1 , x q 2 , x ) + 2 r 2 ( ε q 2 , x q 1 , x ) + q 1 ( r 1 , x r 2 , x ) + q 2 ( ε r 2 , x r 1 , x ) , r 2 , t 2 = 2 k 2 ( t ) + ( r 2 + x r 2 , x ) k 1 ( t ) + 1 2 ( ε 1 ) r 1 2 + ε r 2 2 2 r 1 r 2 + 4 q 1 q 2 + q 1 ( q 1 , x x q 2 , x x ) + q 2 ( q 1 , x x ε q 2 , x x ) + 2 ε 2 q 2 4 2 q 1 4 q 1 2 ε q 2 2 .
Let ε = 0 ; the first and second equations in (20) coincide with (9). Therefore, the system (20) is an integrable coupling of the TD non-isospectral equations. Thus, (19) is an integrable coupling of the TD non-isospectral hierarchy. Let n = 3 , and choose a suitable transformation; then, (19) becomes a coupled mKdV equation.

Bi-Hamiltonian Structures

With the aid of the following Z 2 ε -trace identities, which were discussed in [26], we shall construct the Bi-Hamiltonian structures of the integrable coupling of the non-isospectral hierarchy (19):
δ δ u ˜ t r ( V 1 U 2 λ ) + t r ( V 2 U 1 λ ) d x = λ γ λ λ γ t r ( V 1 U 2 u ˜ ) + t r ( V 2 U 1 u ˜ ) , δ δ u ˜ t r ( V 1 U 1 λ ) + ε t r ( V 2 U 2 λ ) d x = λ γ λ λ γ t r ( V 1 U 1 u ˜ ) + ε t r ( V 2 U 2 u ˜ ) .
From (15), we obtain
t r ( V 1 U 2 q 1 ) + t r ( V 2 U 1 q 1 ) = b ^ + c ^ , t r ( V 1 U 2 q 2 ) + t r ( V 2 U 1 q 2 ) = b + c , t r ( V 1 U 2 r 1 ) + t r ( V 2 U 1 r 1 ) = a ^ , t r ( V 1 U 2 r 2 ) + t r ( V 2 U 1 r 2 ) = a ,
t r ( V 1 U 1 q 1 ) + ε t r ( V 2 U 2 q 1 ) = b + c , t r ( V 1 U 1 q 2 ) + ε t r ( V 2 U 2 q 2 ) = ε ( b ^ + c ^ ) , t r ( V 1 U 1 r 1 ) + ε t r ( V 2 U 2 r 1 ) = a , t r ( V 1 U 1 r 2 ) + ε t r ( V 2 U 2 r 2 ) = ε a ^ , t r ( V 1 U 2 λ ) + t r ( V 2 U 1 λ ) = 2 ( a + a ^ ) , t r ( V 1 U 1 λ ) + ε t r ( V 2 U 2 λ ) = 2 ( a + ε a ^ ) .
Substituting the above equations into (21) and collecting the terms with the same powers of λ produces
δ δ u ˜ 2 ( a m + 1 + a ^ m + 1 ) d x = ( γ m ) b ^ m + c ^ m a ^ m b m + c m a m , δ δ u ˜ 2 ( a m + 1 + ε a ^ m + 1 ) d x = ( γ m ) b m + c m a m ε ( b ^ m + c ^ m ) ε a ^ m .
Set m = 1 ; we have γ = 0 . Therefore, we conclude that
δ δ u ˜ a m + 2 + a ^ m + 2 m + 1 d x = 1 2 b ^ m + 1 + c ^ m + 1 a ^ m + 1 b m + 1 + c m + 1 a m + 1 = δ H m + 1 δ u ˜ , δ δ u ˜ a m + 2 + ε a ^ m + 2 m + 1 d x = 1 2 b m + 1 + c m + 1 a m + 1 ε ( b ^ m + 1 + c ^ m + 1 ) ε a ^ m + 1 = δ H ^ m + 1 δ u ˜ ,
where
H m + 1 = a m + 2 + a ^ m + 2 m + 1 d x , H ^ m + 1 = a m + 2 + ε a ^ m + 2 m + 1 d x .
From (18), we obtain two kind of recursive relationships:
b ^ m + 1 + c ^ m + 1 a ^ m + 1 b m + 1 + c m + 1 a m + 1 = L ˜ 1 b ^ m + c ^ m a ^ m b m + c m a m + R ˜ 1 k m ( t ) + R ˜ 0 k m + 1 ( t ) , m 0 ,
b m + 1 + c m + 1 a m + 1 ε ( b ^ m + 1 + c ^ m + 1 ) ε a ^ m + 1 = L ˜ 1 b m + c m a m ε ( b ^ m + c ^ m ) ε a ^ m + R ^ 1 k m ( t ) + R ^ 0 k m + 1 ( t ) , m 0 ,
where the recursion operator L ˜ 1 becomes
L ˜ 1 = 1 2 ( ε 1 ) L ˜ 11 L ˜ 12 L ˜ 13 L ˜ 14 L ˜ 21 L ˜ 22 L ˜ 23 L ˜ 24 ε L ˜ 13 ε L ˜ 14 L ˜ 11 L ˜ 12 ε L ˜ 23 ε L ˜ 24 L ˜ 21 L ˜ 22 ,
with
L ˜ 11 = r 1 + ε r 2 , L ˜ 12 = q 1 + ε q 2 q 1 2 ε q 2 2 + 4 q 1 4 ε q 2 , L ˜ 13 = r 1 r 2 , L ˜ 14 = q 1 + q 2 q 1 2 ε q 2 2 4 q 1 + 4 q 2 , L ˜ 21 = 1 ( ε q 2 q 1 ) , L ˜ 22 = 1 ( ε r 2 r 1 ) , L ˜ 23 = 1 ( q 1 q 2 ) , L ˜ 24 = 1 ( r 1 r 2 ) ,
and
R ˜ 1 = 1 2 q 2 q 1 2 ε q 2 2 1 r 2 q 1 q 1 2 ε q 2 2 1 r 1 , R ^ 1 = 1 2 q 1 q 1 2 ε q 2 2 x 1 r 1 ε q 2 q 1 2 ε q 2 2 ε 1 r 2 , R ˜ 0 = 0 x 0 x , R ^ 0 = 0 x 0 ε x .
Then, the hierarchy in (19) determines the following two kinds of Bi-Hamiltonian structures. The first one is
q 1 r 1 q 2 r 2 t n = q 1 ( a n + 1 , x + ε a ^ n + 1 , x ) ε q 2 ( a n + 1 , x + a ^ n + 1 , x ) + ( q 1 ε q 2 ) k n + 1 + ε ( q 1 q 2 ) k n + 1 q 1 2 ε q 2 2 q 1 ( b n + 1 + ε b ^ n + 1 + c n + 1 + ε c ^ n + 1 ) ε q 2 ( b n + 1 + b ^ n + 1 + c n + 1 + c ^ n + 1 ) q 1 2 ε q 2 2 q 1 ( a n + 1 , x + a ^ n + 1 , x ) q 2 ( a n + 1 , x + ε a ^ n + 1 , x ) + ( q 1 q 2 ) k n + 1 + ( q 1 ε q 2 ) k n + 1 q 1 2 ε q 2 2 q 1 ( b n + 1 + b ^ n + 1 + c n + 1 + c ^ n + 1 ) q 2 ( b n + 1 + ε b ^ n + 1 + c n + 1 + ε c ^ n + 1 ) q 1 2 ε q 2 2 = J ˜ 1 b ^ n + 1 + c ^ m + 1 a ^ n + 1 b n + 1 + c n + 1 a n + 1 + R ˜ k n + 1 = : 2 J ˜ 1 δ H n + 1 δ u ˜ + R ˜ k n + 1 = J ˜ 1 ( 2 L ˜ 1 δ H n δ u ˜ + R ˜ 1 k n ( t ) + R ˜ 0 k n + 1 ( t ) ) + R ˜ k n + 1 ( t ) = : Q ˜ 1 δ H n δ u ˜ + J ˜ 1 R ˜ 1 k n ( t ) + ( J ˜ 1 R ˜ 0 + R ˜ ) k n + 1 = J ˜ 1 L ˜ 1 n b ^ 1 + c ^ 1 a ^ 1 b 1 + c 1 a 1 + i = 0 n J ˜ 1 L ˜ 1 n i ( R ˜ 1 k i ( t ) + R ˜ 0 k i + 1 ( t ) ) + R ˜ k n + 1 ,
with the Hamiltonian operators J ˜ 1 , Q ˜ 1 , and R ˜ , as follows:
J ˜ 1 = 0 ε ( q 1 q 2 ) q 1 2 ε q 2 2 0 q 1 ε q 2 q 1 2 ε q 2 2 ε q 1 q 2 q 1 2 ε q 2 2 0 q 1 ε q 2 q 1 2 ε q 2 2 0 0 q 1 ε q 2 q 1 2 ε q 2 2 0 q 1 q 2 q 1 2 ε q 2 2 q 1 ε q 2 q 1 2 ε q 2 2 0 q 1 q 2 q 1 2 ε q 2 2 0 , Q ˜ 1 = 1 ε 1 ε Q ˜ 11 ε Q ˜ 12 Q ˜ 13 Q ˜ 14 ε Q ˜ 21 ε Q ˜ 22 Q ˜ 23 Q ˜ 24 Q ˜ 13 Q ˜ 14 Q ˜ 11 Q ˜ 12 Q ˜ 23 Q ˜ 24 Q ˜ 21 Q ˜ 22 , R ˜ = 1 q 1 2 ε q 2 2 ( 1 + ε ) q 1 2 ε q 2 0 2 q 1 ( 1 + ε ) q 2 0 ,
Q ˜ 11 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 21 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 23 , Q ˜ 12 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 22 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 24 , Q ˜ 13 = ε ( q 1 q 2 ) q 1 2 ε q 2 2 L ˜ 23 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 21 , Q ˜ 14 = ε ( q 1 q 2 ) q 1 2 ε q 2 2 L ˜ 24 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 22 , Q ˜ 21 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 11 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 13 , Q ˜ 22 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 12 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 14 , Q ˜ 23 = ε q 1 q 2 q 1 2 ε q 2 2 L ˜ 13 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 11 , Q ˜ 24 = ε q 1 q 2 q 1 2 ε q 2 2 L ˜ 14 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 12 .
Similarly, for the second component, we have
q 1 r 1 q 2 r 2 t n = q 1 ( a n + 1 , x + ε a ^ n + 1 , x ) ε q 2 ( a n + 1 , x + a ^ n + 1 , x ) + ( q 1 ε q 2 ) k n + 1 + ε ( q 1 q 2 ) k n + 1 q 1 2 ε q 2 2 q 1 ( b n + 1 + ε b ^ n + 1 + c n + 1 + ε c ^ n + 1 ) ε q 2 ( b n + 1 + b ^ n + 1 + c n + 1 + c ^ n + 1 ) q 1 2 ε q 2 2 q 1 ( a n + 1 , x + a ^ n + 1 , x ) q 2 ( a n + 1 , x + ε a ^ n + 1 , x ) + ( q 1 q 2 ) k n + 1 + ( q 1 ε q 2 ) k n + 1 q 1 2 ε q 2 2 q 1 ( b n + 1 + b ^ n + 1 + c n + 1 + c ^ n + 1 ) q 2 ( b n + 1 + ε b ^ n + 1 + c n + 1 + ε c ^ n + 1 ) q 1 2 ε q 2 2 = J ^ 1 b n + 1 + c n + 1 a n + 1 ε ( b ^ n + 1 + c ^ n + 1 ) ε a ^ n + 1 + R ˜ k n + 1 = : 2 J ^ 1 δ H ^ n + 1 δ u ˜ + R ˜ k n + 1 = J ^ 1 ( 2 L ˜ 1 δ H ^ n δ u ˜ + R ^ 1 k n ( t ) + R ^ 0 k n + 1 ( t ) ) + R ˜ k n + 1 = : Q ^ 1 δ H ^ n δ u ˜ + J ^ 1 ( R ^ 1 k n ( t ) + + R ^ 0 k n + 1 ( t ) ) + R ˜ k n + 1 = J ^ 1 L ˜ 1 n b 1 + c 1 a 1 ε ( b ^ 1 + c ^ 1 ) ε a ^ 1 + i = 0 n J ^ 1 L ˜ n i ( R ^ 1 k i ( t ) + R ^ 0 k i + 1 ( t ) ) + R ˜ k n + 1 ,
with the Hamiltonian operators J ^ 1 and Q ^ 1 , as follows:
J ^ 1 = 0 q 1 ε q 2 q 1 2 ε q 2 2 0 q 1 q 2 q 1 2 ε q 2 2 q 1 ε q 2 q 1 2 ε q 2 2 0 q 1 q 2 q 1 2 ε q 2 2 0 0 q 1 q 2 q 1 2 ε q 2 2 0 q 1 ε q 2 ε ( q 1 2 ε q 2 2 ) q 1 q 2 q 1 2 ε q 2 2 0 q 1 ε q 2 ε ( q 1 2 ε q 2 2 ) 0 , Q ^ 1 = 1 ε 1 ε Q ^ 11 ε Q ^ 12 Q ^ 13 Q ^ 14 ε Q ^ 21 ε Q ^ 22 Q ^ 23 Q ^ 24 Q ^ 13 Q ^ 14 Q ^ 11 Q ^ 12 Q ^ 23 Q ^ 24 Q ^ 21 Q ^ 22 ,
Q ^ 11 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 23 + q 1 ε q 2 ε ( q 1 2 ε q 2 2 ) L ˜ 21 , Q ^ 12 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 24 + q 1 ε q 2 ε ( q 1 2 ε q 2 2 ) L ˜ 22 , Q ^ 13 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 21 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 23 , Q ^ 14 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 22 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 24 , Q ^ 21 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 13 + q 1 ε q 2 ε ( q 1 2 ε q 2 2 ) L ˜ 11 , Q ^ 22 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 14 + q 1 ε q 2 ε ( q 1 2 ε q 2 2 ) L ˜ 12 , Q ^ 23 = q 1 q 2 ( q 1 2 ε q 2 2 ) L ˜ 11 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 13 , Q ^ 24 = q 1 q 2 q 1 2 ε q 2 2 L ˜ 12 + q 1 ε q 2 q 1 2 ε q 2 2 L ˜ 14 .

4. A Muti-Components Integrable TD Nonisospectral Hierarchy

In order to obtain the muti-components non-isospectral problem, we introduce the Lie algebra A 1 N associated with the N-component non-isospectral problem.
First of all, a brief introduction to the Lie algebra A 1 N related to the Lie algebra A will be given. Let us define a N × N square matrix:
M m 1 , m 2 , , m N = m 1 ε m N ε m N 1 ε m 4 ε m 3 ε m 2 m 2 m 1 ε m N ε m 5 ε m 4 ε m 3 m 3 m 2 m 1 ε m 6 ε m 5 ε m 4 m N 2 m N 3 m N 4 m 1 ε m N ε m N 1 m N 1 m N 2 m N 3 m 2 m 1 ε m N m N m N 1 m N 2 m 3 m 2 m 1 = : m 1 , m 2 , , m N T ,
where m n ( 1 n N ) represents n arbitrary square matrices of the same order.
For the arbitrary matrices P = [ P 1 , P 2 , , P N ] T , Q = [ Q 1 , Q 2 , , Q N ] T , one has the Lie product:
[ P , Q ] = R 1 ε R N ε R N 1 ε R 4 ε R 3 ε R 2 R 2 R 1 ε R N ε R 5 ε R 4 ε R 3 R 3 R 2 R 1 ε R 6 ε R 5 ε R 4 R N 2 R N 3 R N 4 R 1 ε R N ε R N 1 R N 1 R N 2 R N 3 R 2 R 1 ε R N R N R N 1 R N 2 R 3 R 2 R 1 = : R 1 , R 2 , , R N T ,
where
R l = k + j = l + 1 1 k , j l [ P k , Q j ] + σ ε s + t = l + 1 + N l + 1 s , t N [ P s , Q t ] ,
is subject to
σ = 1 , 1 l N 1 , 0 , l = N .
Similarly, the matrix product P Q can be easily written as
P Q = [ P 1 Q 1 + σ ε s + t = 2 + N 2 s , t N P s Q t , k + j = 3 1 k , j 2 P k Q j + σ ε s + t = 3 + N 3 s , t N P s Q t , , k + j = l 1 k , j l P k Q j + σ ε s + t = l + 1 + N l + 1 s , t N P s Q t , , k + j = l + 1 1 k , j N P k Q j ] T .
When ε = 0 , R 1 , R 2 , , R N T is a lower triangular matrix, R l = k + j = l + 1 1 k , j l [ P k , Q j ] , and
P Q = [ P 1 Q 1 , k + j = 3 1 k , j 2 P k Q j , , k + j = l 1 k , j l P k Q j , k + j = l + 1 1 k , j N P k Q j ] T .
Secondly, we denote A 1 N = span { h ^ i } i = 1 4 N , with commutators
h ^ 1 = M ( h 1 , 0 , , 0 ) , h ^ 2 = M ( h 2 , 0 , , 0 ) , h ^ 3 = M ( h 3 , 0 , , 0 ) , h ^ 4 = M ( h 4 , 0 , , 0 ) , h ^ 5 = M ( 0 , h 1 , , 0 ) , h ^ 6 = M ( 0 , h 2 , , 0 ) , h ^ 7 = M ( 0 , h 3 , , 0 ) , h ^ 8 = M ( 0 , h 4 , , 0 ) , h ^ 4 N 3 = M ( 0 , 0 , , h 1 ) , h ^ 4 N 2 = M ( 0 , 0 , , h 2 ) , h ^ 4 N 1 = M ( 0 , 0 , , h 3 ) , h ^ 4 N = M ( 0 , 0 , , h 4 ) , h ^ 4 l 3 , h ^ 4 k 2 = h ^ 4 l 3 , h ^ 4 k 3 = h ^ 4 l 2 , h ^ 4 k 2 = h ^ 4 l 1 , h ^ 4 k 1 = h ^ 4 l , h ^ 4 k = 0 , l , k = 1 , 2 , , N , h ^ 4 l 3 , h ^ 4 k 1 = h ^ 4 l 2 , h ^ 4 k 1 = h ^ 4 ( k + l 1 ) 1 , 1 k N l + 1 , ε h ^ 4 ( k + l 1 N ) 1 , N l + 2 k N , h ^ 4 l 3 , h ^ 4 k = h ^ 4 l 2 , h ^ 4 k = h ^ 4 ( k + l 1 ) , 1 k N l + 1 , ε h ^ 4 ( k + l 1 N ) , N l + 2 k N , h ^ 4 l 1 , h ^ 4 k = h ^ 4 ( k + l 1 ) 3 h ^ 4 ( k + l 1 ) 2 , 1 k N l + 1 , ε ( h ^ 4 ( k + l 1 N ) 3 h ^ 4 ( k + l 1 N ) 2 ) , N l + 2 k N .
Let G ^ k = span h ^ 4 k 3 , h ^ 4 k 2 , h ^ 4 k 1 , h ^ 4 k , k = 1 , 2 , N , then A 1 N = G ^ 1 G ^ 2 G ^ N . Thus, we obtain
G ^ s , G ^ t G ^ s + t 1 δ N , δ = 0 , 2 s + t N + 1 , 1 , N + 2 s + t 2 N , s , t = 1 , 2 , , N .
In terms of A 1 N under the case of ε = 0 , we introduce the following N-component non-isospectral problem:
ψ x = U ^ ψ , U ^ = l = 1 N [ λ h ^ 4 l 3 + λ h ^ 4 l 2 + r l h ^ 4 l 3 + q l ( h ^ 4 l 1 + h ^ 4 l ) ] , ψ t = V ^ ψ , V ^ = l = 1 N [ a l h ^ 4 l 3 a l h ^ 4 l 2 + b l h ^ 4 l 1 + c l h ^ 4 l ] , λ t = m 0 k m ( t ) λ m ,
where u ^ = ( q 1 , r 1 , q 2 , r 2 , , q N , r N ) T , U ^ = U ^ 1 , U ^ 2 , , U ^ N T , V ^ = V ^ 1 , V ^ 2 , , V ^ N T and
U ^ l = λ h 1 + λ h 2 + r l h 1 + q l ( h 3 + h 4 ) , V ^ l = a l h 1 a l h 2 + b l h 3 + c l h 4 .
By choosing
a l = m 0 a l m λ m , b l = m 0 b l m λ m , c l = m 0 c l m λ m ,
and solving the stationary zero curvature equation
V ^ x = U ^ λ λ t + [ U ^ , V ^ ] ,
we arrive at the following recursion equations:
a l m , x = i + j = l + 1 1 i , j l [ q i ( c j m b j m ) ] k m ( t ) , b l m , x = 2 1 p l b p , m + 1 , c l m , x = 2 1 p l c p , m + 1 ,
which are equal to
a l m = i + j = l + 1 1 i , j l 1 [ q i ( c j m b j m ) ] k m ( t ) x , b 1 , m + 1 = 1 2 ( r 1 b 1 m b 1 m , x 2 q 1 a 1 m ) , b l , m + 1 = 1 2 [ b ( l 1 ) m , x b l m , x 2 q l a 1 m + r l b 1 m k + j = l + 1 1 k < l 1 < j l ( 2 q k ( a j m a j 1 , m ) r k ( b j m b j 1 , m ) ) ] , c 1 , m + 1 = 1 2 ( c 1 m , x 2 q 1 a 1 m + r 1 c 1 m ) , c l , m + 1 = 1 2 [ c l m , x c ( l 1 ) m , x 2 q l a 1 m + r l c 1 m k + j = l + 1 1 k < l 1 < j l ( 2 q k ( a j m a j 1 , m ) r k ( c j m c j 1 , m ) ) ] .
By choosing the initial data
a l 0 = 1 , b l 0 = 0 , c l 0 = 0 , k 0 = 0 , l = 1 , 2 , , N ,
letting
a l k | q k = r k = 0 = 0 , b l k | q k = r k = 0 = 0 , c l k | q k = r k = 0 = 0 , l = 1 , 2 , , N ,
and using the recursion relations (30), we can obtain
b l 1 = q l , c l 1 = q l , a l 1 = k 1 ( t ) x , b 1 , 2 = q 1 k 1 ( t ) x + 1 2 ( r 1 q 1 q 1 , x ) , b l , 2 = q l k 1 ( t ) x 1 2 [ q l , x q l 1 , x r l q 1 k + j = l + 1 1 k < l 1 < j l r k ( q j q j 1 ) ] , c 1 , 2 = q 1 k 1 ( t ) x + 1 2 ( r 1 q 1 + q 1 , x ) , c l , 2 = q l k 1 ( t ) x 1 2 [ q l 1 , x q l , x r l q 1 k + j = l + 1 1 k < l 1 < j l r k ( q j q j 1 ) ] , a 2 l 1 , 2 = 1 2 [ q l 2 2 i + j = 2 l 1 1 i [ 2 l 1 2 ] q i ( q j q j + 1 ) ] k 2 ( t ) x , a 2 l , 2 = 1 2 [ q l 2 + q 2 l q 1 2 i + j = 2 l l < i < 2 l q i ( q j q j + 1 ) ] k 2 ( t ) x , .
By denoting
V ^ + ( n ) = k = 1 N m = 0 n ( a k m h ^ 4 k 1 λ n m + a k m h ^ 4 k 2 λ n m + b k m h ^ 4 k 3 λ n m + c k m h ^ 4 k λ n m ) ,
one can find that
V ^ + , x ( n ) + U ^ λ λ + , t ( n ) + U ^ , V ^ + ( n ) = 2 k = 1 N p = 1 k b p , n + 1 h ^ 4 k 1 p = 1 k c p , n + 1 h ^ 4 k .
We choose the modification term as
Δ ^ n = q 1 1 i = 1 N p = 1 i ( b p , n + 1 + c p , n + 1 ) h ^ 4 i 3 + k = 2 N ( 1 ) k 1 q 1 k i = 2 N [ s 1 + + s k = i + k 1 s l 2 , l = 1 , , k 1 s k > 0 [ p = 1 s k ( b p , n + 1 + c p , n + 1 ) q s 1 q s 2 q s k 1 ] ] h ^ 4 i 3 .
By taking V ^ ( n ) = V ^ + ( n ) + Δ ^ n , the non-isospectral zero curvature equation
U ^ t n + U ^ λ λ t ( n ) N ^ x + U ^ , V ^ ( n ) = 0
leads to the following N-component non-isospectral TD hierarchy:
q j , t n = p = 1 j ( c p , n + 1 b p , n + 1 ) = q 1 1 ( i = 1 j a i n , x + j k n ( t ) ) + i = 2 j ( 1 ) i 1 q 1 i s 1 + + s i = j + i 1 s l 2 , l = 1 , , i 1 s i > 0 [ p = 1 s i a p n , x q s 1 q s 2 q s i 1 + s i q s 1 q s 2 q s i 1 k n ( t ) ] , r j , t n = i = 2 j ( 1 ) i 1 q 1 i s 1 + + s i = j + i 1 s l 2 , l = 1 , , i 1 s i > 0 [ p = 1 s i ( b p , n + 1 + c p , n + 1 ) q s 1 q s 2 q s i 1 ] + q 1 1 i = 1 j ( c i , n + 1 + b i , n + 1 ) , j = 1 , , N .
Letting N = n = 2 , system (31) is reduced to system (19), in which ε = 0 . Under the case of n = 2 , we can infer that the system is a new N-component non-isospectral TD system. Therefore, (31) is a N-component non-isospectral TD integrable hierarchy.

Bi-Hamiltonian Structures

In order to furnish the Hamiltonian structures of the N-component non-isospectral TD hierarchy (31), we will use the Z N ε -trace identity
δ u ^ k + j = l + 1 1 k , j l t r ( V ^ k U ^ j λ ) d x = λ γ λ λ γ k + j = l + 1 1 k , j l t r ( V ^ k U ^ j u ^ ) .
From (26), we have
k + j = l + 1 1 k , j l t r ( V ^ k U ^ j λ ) = 2 1 p l a p ,
and
k + j = l + 1 1 k , j l t r ( V ^ k U ^ j u ^ ) = 1 p l ( b p + c p ) 1 p l a p .
By substituting (33) and (34) into (32), we have
δ u ^ 2 1 p l a p d x = λ γ λ λ γ 1 p l ( b p + c p ) 1 p l a p .
By inserting (27) into (35) and comparing the coefficients of λ , we obtain
δ u ^ 2 1 p l a p , m + 1 d x = ( γ m ) 1 p l ( b p , m + c p , m ) 1 p l a p , m .
By fixing the constant m = 1 in the above equation, we conclude that γ = 0 . Then, we obtain
δ u ^ 1 p l a p , m + 2 m + 1 d x = 1 2 1 p l ( b p , m + 1 + c p , m + 1 ) 1 p l a p , m + 1 = δ H ^ l , m + 1 u ^ .
Therefore,
H ^ l , m + 1 = 1 p l a p , m + 2 m + 1 d x , l = 1 , 2 , , N .
With the aid of (30) and (37), the Bi-Hamiltonian structures of hierarchy (31) are obtained as follows:
u ^ t n = q 1 r 1 q 2 r 2 q N r N t n = q 1 1 ( a 1 n + 1 , x + k n + 1 ( t ) ) [ q 1 1 ( c 1 , n + 1 + b 1 , n + 1 ) ] q 1 1 ( a 1 n + 1 , x + a 2 n + 1 , x + 2 k n + 1 ( t ) ) q 2 ( a 1 n + 1 , x + k n + 1 ( t ) ) q 1 2 [ q 1 1 i = 1 2 ( c i , n + 1 + b i , n + 1 ) s 1 + s 2 = 3 s 1 2 , s 2 > 0 p = 1 s 2 ( c p , n + 1 + b p , n + 1 ) q s 1 q 1 2 ] A B = Φ ¯ 1 n J ¯ 1 δ δ u ^ H ¯ 1 , 1 H ¯ 2 , 1 H ¯ 3 , 1 H ¯ 4 , 1 H ¯ N 1 , 1 H ¯ N , 1 + m = 0 n Φ ¯ 1 n m J ¯ 1 ( R ¯ 1 k n ( t ) + R ¯ 0 k n + 1 ( t ) ) + R ¯ k n + 1 ( t ) ,
where J ¯ 1 is the Hamiltonian operator:
J ¯ 1 = J 11 0 0 0 J 12 J 11 0 0 J 1 , N 1 J 1 , N 2 J 13 J 12 J 1 N J 1 , N 1 J 12 J 11 ,
J 11 = 0 q 1 1 q 1 1 0 , J 12 = 0 q 2 q 1 2 q 2 q 1 2 0 , J 1 l = 0 C C , l = 3 , , N , C = q l q 1 2 + i = 3 l ( 1 ) i 1 q 1 i s 1 + + s i 1 = l + i 2 s j 2 , j = 1 , , i 1 q s 1 q s 2 q s i 1 ,
R ¯ = q 1 1 0 2 q 1 1 q 2 q 1 2 0 N q 1 1 + i = 2 N ( 1 ) i 1 q 1 i s 1 + + s i = N + i 1 s l 2 , l = 1 , , i 1 s i > 0 s i q s 1 q s 2 q s i 1 0 ,
Q ¯ 1 = J ¯ 1 L ¯ 1 and Φ ¯ 1 = J ¯ 1 L ¯ 1 J ¯ 1 1 .

5. Conclusions and Discussion

In this paper, we consider three kinds of Lie algebras: classical Lie algebras, A, the enlarged Lie algebras, A 12 , and Lie algebras, A 1 N , which are associated with the N-component non-isospectral problem. Based on these Lie algebras, we derive three classes of non-isospectral TD hierarchies, and the corresponding Bi-Hamiltonian structures are established by using trace identity. It should be noted that the first nontrivial system in the first kind of TD hierarchy can be reduced to the TD equation, and the second nontrivial member can be reduced to the mKdV equation. We find that the second kind of integrable coupling of the TD hierarchy can be reduced to the integrable coupling of TD equations and the coupled mKdV equations. The method we used in this paper can be applied to generate other multi-component non-isospectral integrable hierarchies in the future.

Author Contributions

Methodology, H.W.; Software, J.Y.; Formal analysis, J.Y.; Writing—original draft, J.Y.; Writing—review & editing, H.W.; Funding acquisition, H.W. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Scientific Research Start-Up Foundation of Jimei University (Grant No. C622125), and Fujian Provincial Education Department, Grant No. JAT220172.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The author declares that they have no conflicts of interest.

References

  1. Magri, F. Nonlinear Evolution Equations and Dynamical Systems. In Springer Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1980; Volume 120, p. 233. [Google Scholar]
  2. Tu, G.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 1989, 30, 330–338. [Google Scholar] [CrossRef]
  3. Ma, W.X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. Contemp. Math. 1992, 13, 79–89. [Google Scholar]
  4. Ma, W.X.; Chen, M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebra. J. Phys. A 2006, 39, 10787–10801. [Google Scholar] [CrossRef]
  5. Tu, G.Z.; Ma, W.X. An algebraic approach for extending Hamilton operators. J. Partial. Equ. 1992, 3, 53–56. [Google Scholar]
  6. Hu, X.B. An approach to generate super-extensions of integrable system. J. Phys. A 1997, 30, 619–632. [Google Scholar] [CrossRef]
  7. Guo, F. A hierarchy of integrable Hamiltonian equations. Acta Math. Appl. Sinica 2000, 23, 181–187. [Google Scholar]
  8. Zhang, Y. A general Boite-Pempinelli-Tu hierarchy and its bi-Hamiltonian structure. Phys. Lett. A 2003, 317, 280–286. [Google Scholar] [CrossRef]
  9. Zhang, Y.F.; Mei, J.Q.; Guan, H.Y. A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. J. Geom. Phys. 2020, 147, 103538. [Google Scholar] [CrossRef]
  10. Zhang, Y.F.; Tam, H.W. Generation of nonlinear evolution equations by reductions of the self-dual Yang-Mills equations. Commun. Theor. Phys. 2014, 61, 203–206. [Google Scholar] [CrossRef]
  11. Liu, H.; Geng, X.G. An integrable extension of TD hierarchy and generalized bi-Hamiltonian structures. Mod. Phys. Lett. B 2015, 29, 1550116. [Google Scholar] [CrossRef]
  12. Gordoa, P.R.; Pickering, A.; Zhu, Z.N. New 2+1 dimensional nonisospectral Toda lattice hierarchy. J. Math. Phys. 2007, 48, 023515. [Google Scholar] [CrossRef]
  13. Ma, W.X. Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations. J. Math. Phys. 1992, 33, 2464–2476. [Google Scholar] [CrossRef]
  14. Ma, W.X. A simple scheme for generating nonisospectral flows from zero curvature representation. Phys. Lett. A 1993, 179, 179–185. [Google Scholar] [CrossRef]
  15. Qiao, Z.J. New hierarchies of isospectral and non-isospectral integrable NLEEs derived from the Harry-Dym spectral problem. Phys. A 1998, 252, 377–387. [Google Scholar] [CrossRef]
  16. Ma, W.X. An approach for constructing nonisospectral hierarchies of evolution equations. J. Phys. A Math. Gen. 1992, 25, L719–L726. [Google Scholar] [CrossRef]
  17. Zhang, Y.F.; Rui, W.J. A few continuous and discrete dynamical systems. Rep. Math. Phys. 2016, 78, 19–32. [Google Scholar] [CrossRef]
  18. Zhao, X.H.; Tiao, B.; Li, H.M.; Guo, Y.J. Solitons, periodic waves, breathers and integrability for a non-isospectral and variable-coefficient fifth-order Korteweg-de Vries equation in fluids. Appl. Math. Lett. 2017, 65, 48–55. [Google Scholar] [CrossRef]
  19. Zhang, Y.F.; Zhang, H.Q. A direct method for integrable couplings of TD hierarchy. J. Math. Phys. 2002, 43, 466–472. [Google Scholar] [CrossRef]
  20. Li, Z.; Dong, H.H. (2 + 1)-dimenstional TD hierarchy and its integrable couplings. Mod. Phys. Lett. B 2007, 7, 407–413. [Google Scholar] [CrossRef]
  21. Clarkson, P.A.; Gordoa, P.R.; Pickering, A. Multicomponent equations associated to non-isospectral scattering problems. Inverse Probl. 1997, 13, 1463–1476. [Google Scholar] [CrossRef]
  22. Yu, F.J.; Zhang, H.Q. Hamiltonian structures of the integrable couplings for the multicomponent Dirac hierarchy. Appl. Math. Comput. 2008, 197, 828–835. [Google Scholar] [CrossRef]
  23. Zhang, Y.J.; Ma, W.X.; Unsal, O. A novel kind of AKNS integrable couplings and their Hamiltonain structures. Turkish J. Math. 2016, 41, 1467–1476. [Google Scholar] [CrossRef]
  24. Shen, S.F.; Li, C.X.; Jin, Y.Y.; Ma, W.X. Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling. J. Math. Phys. 2018, 59, 103503. [Google Scholar] [CrossRef]
  25. Mcanally, M.; Ma, W.X. Two integrable couplings of a generalized D-Kaup-Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures. Nonlinear Anal. 2020, 191, 111629. [Google Scholar] [CrossRef]
  26. Wang, H.F.; Zhang, Y.F. A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105822. [Google Scholar] [CrossRef]
  27. Yu, J.D.; Wang, H.F.; Li, C.Z. A kind of multi-component nonisospectral generalized nonlinear Schrödinger hierarchies. Theoret. Math. Phys. 2023, 21, 837–861. [Google Scholar] [CrossRef]
  28. Wang, H.F.; Zhang, Y.F. A new multi-component integrable coupling and its application to isospectral and nonisospectral problems. Commun. Nonlinear Sci. Numer. Simul. 2022, 105, 106075. [Google Scholar] [CrossRef]
  29. Wang, H.F.; Zhang, Y.F. A class of extended high-dimensional nonisospectral KdV hierarchies and symmetry. J. Nonlinear Math. Phys. 2024, accepted. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yu, J.; Wang, H. A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures. Axioms 2024, 13, 282. https://doi.org/10.3390/axioms13050282

AMA Style

Yu J, Wang H. A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures. Axioms. 2024; 13(5):282. https://doi.org/10.3390/axioms13050282

Chicago/Turabian Style

Yu, Jianduo, and Haifeng Wang. 2024. "A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures" Axioms 13, no. 5: 282. https://doi.org/10.3390/axioms13050282

APA Style

Yu, J., & Wang, H. (2024). A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures. Axioms, 13(5), 282. https://doi.org/10.3390/axioms13050282

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop