A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures
Abstract
:1. Introduction
2. A Nonisospectral TD Integrable Hierarchy
Bi-Hamiltonian Structures
3. An Integrable Coupling of the TD Non-Isospectral Hierarchy
Bi-Hamiltonian Structures
4. A Muti-Components Integrable TD Nonisospectral Hierarchy
Bi-Hamiltonian Structures
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Magri, F. Nonlinear Evolution Equations and Dynamical Systems. In Springer Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1980; Volume 120, p. 233. [Google Scholar]
- Tu, G.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 1989, 30, 330–338. [Google Scholar] [CrossRef]
- Ma, W.X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. Contemp. Math. 1992, 13, 79–89. [Google Scholar]
- Ma, W.X.; Chen, M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebra. J. Phys. A 2006, 39, 10787–10801. [Google Scholar] [CrossRef]
- Tu, G.Z.; Ma, W.X. An algebraic approach for extending Hamilton operators. J. Partial. Equ. 1992, 3, 53–56. [Google Scholar]
- Hu, X.B. An approach to generate super-extensions of integrable system. J. Phys. A 1997, 30, 619–632. [Google Scholar] [CrossRef]
- Guo, F. A hierarchy of integrable Hamiltonian equations. Acta Math. Appl. Sinica 2000, 23, 181–187. [Google Scholar]
- Zhang, Y. A general Boite-Pempinelli-Tu hierarchy and its bi-Hamiltonian structure. Phys. Lett. A 2003, 317, 280–286. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Mei, J.Q.; Guan, H.Y. A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. J. Geom. Phys. 2020, 147, 103538. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H.W. Generation of nonlinear evolution equations by reductions of the self-dual Yang-Mills equations. Commun. Theor. Phys. 2014, 61, 203–206. [Google Scholar] [CrossRef]
- Liu, H.; Geng, X.G. An integrable extension of TD hierarchy and generalized bi-Hamiltonian structures. Mod. Phys. Lett. B 2015, 29, 1550116. [Google Scholar] [CrossRef]
- Gordoa, P.R.; Pickering, A.; Zhu, Z.N. New 2+1 dimensional nonisospectral Toda lattice hierarchy. J. Math. Phys. 2007, 48, 023515. [Google Scholar] [CrossRef]
- Ma, W.X. Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations. J. Math. Phys. 1992, 33, 2464–2476. [Google Scholar] [CrossRef]
- Ma, W.X. A simple scheme for generating nonisospectral flows from zero curvature representation. Phys. Lett. A 1993, 179, 179–185. [Google Scholar] [CrossRef]
- Qiao, Z.J. New hierarchies of isospectral and non-isospectral integrable NLEEs derived from the Harry-Dym spectral problem. Phys. A 1998, 252, 377–387. [Google Scholar] [CrossRef]
- Ma, W.X. An approach for constructing nonisospectral hierarchies of evolution equations. J. Phys. A Math. Gen. 1992, 25, L719–L726. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Rui, W.J. A few continuous and discrete dynamical systems. Rep. Math. Phys. 2016, 78, 19–32. [Google Scholar] [CrossRef]
- Zhao, X.H.; Tiao, B.; Li, H.M.; Guo, Y.J. Solitons, periodic waves, breathers and integrability for a non-isospectral and variable-coefficient fifth-order Korteweg-de Vries equation in fluids. Appl. Math. Lett. 2017, 65, 48–55. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhang, H.Q. A direct method for integrable couplings of TD hierarchy. J. Math. Phys. 2002, 43, 466–472. [Google Scholar] [CrossRef]
- Li, Z.; Dong, H.H. (2 + 1)-dimenstional TD hierarchy and its integrable couplings. Mod. Phys. Lett. B 2007, 7, 407–413. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Gordoa, P.R.; Pickering, A. Multicomponent equations associated to non-isospectral scattering problems. Inverse Probl. 1997, 13, 1463–1476. [Google Scholar] [CrossRef]
- Yu, F.J.; Zhang, H.Q. Hamiltonian structures of the integrable couplings for the multicomponent Dirac hierarchy. Appl. Math. Comput. 2008, 197, 828–835. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ma, W.X.; Unsal, O. A novel kind of AKNS integrable couplings and their Hamiltonain structures. Turkish J. Math. 2016, 41, 1467–1476. [Google Scholar] [CrossRef]
- Shen, S.F.; Li, C.X.; Jin, Y.Y.; Ma, W.X. Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling. J. Math. Phys. 2018, 59, 103503. [Google Scholar] [CrossRef]
- Mcanally, M.; Ma, W.X. Two integrable couplings of a generalized D-Kaup-Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures. Nonlinear Anal. 2020, 191, 111629. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105822. [Google Scholar] [CrossRef]
- Yu, J.D.; Wang, H.F.; Li, C.Z. A kind of multi-component nonisospectral generalized nonlinear Schrödinger hierarchies. Theoret. Math. Phys. 2023, 21, 837–861. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. A new multi-component integrable coupling and its application to isospectral and nonisospectral problems. Commun. Nonlinear Sci. Numer. Simul. 2022, 105, 106075. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. A class of extended high-dimensional nonisospectral KdV hierarchies and symmetry. J. Nonlinear Math. Phys. 2024, accepted. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Wang, H. A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures. Axioms 2024, 13, 282. https://doi.org/10.3390/axioms13050282
Yu J, Wang H. A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures. Axioms. 2024; 13(5):282. https://doi.org/10.3390/axioms13050282
Chicago/Turabian StyleYu, Jianduo, and Haifeng Wang. 2024. "A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures" Axioms 13, no. 5: 282. https://doi.org/10.3390/axioms13050282
APA StyleYu, J., & Wang, H. (2024). A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures. Axioms, 13(5), 282. https://doi.org/10.3390/axioms13050282