Estimation of Gumbel Distribution Based on Ordered Maximum Ranked Set Sampling with Unequal Samples
Abstract
:1. Introduction
2. Some Ranked Set Sampling Techniques
2.1. Maximum Ranked Set Sampling
2.2. Ordered Maximum Ranked Set Sampling
3. Method of Moments
3.1. Estimation Based on SRS
3.2. Estimation Based on RSS
3.3. Estimation Based on MRSS
3.4. Estimation Based on OMRSS
4. Simulation Study
- Absolute bias (AB): , where represents the parameters, whereas represents their estimates and N is the number of iterations. A lower value of AB suggests that the experimental data and prediction model are more accurately correlated.
- Mean squared error (MSE): . A greater performance of the estimations is indicated by a smaller value of MSE.
- Relative efficiency (RE): The relative efficiency represents the ratio of their efficiencies.
5. Empirical Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McIntyre, G.A. A method for unbiased selective sampling, using ranked sets. Aust. J. Agric. Res. 1952, 3, 385–390. [Google Scholar] [CrossRef]
- Takahasi, K.; Wakimoto, K. On unbiased estimates of the population mean based on the sample stratified by means of ordering. Ann. Inst. Stat. Math. 1968, 20, 1–31. [Google Scholar] [CrossRef]
- Lavin, M. The ‘Bayesics’ of ranked set sampling. Environ. Ecol. Stat. 1999, 6, 47–57. [Google Scholar] [CrossRef]
- Chen, Z.; Bai, Z.; Sinha, B.K. Ranked Set Sampling: Theory and Applications; Springer: New York, NY, USA, 2004; Volume 176. [Google Scholar]
- Esemen, M.; Gürler, S. Parameter estimation of generalized Rayleigh distribution based on ranked set sample. J. Stat. Comput. Simul. 2018, 88, 615–628. [Google Scholar] [CrossRef]
- Halls, L.K.; Dell, T.R. Trial of ranked-set sampling for forage yields. For. Sci. 1966, 12, 22–26. [Google Scholar]
- Al-Saleh, M.F.; Al-Hadhrami, S.A. Estimation of the mean of the exponential distribution using moving extremes ranked set sampling. Stat. Pap. 2003, 44, 367–382. [Google Scholar] [CrossRef]
- Khamnei, H.J.; Mayan, S.R. Comparison of parameter estimation in the exponentiated Gumbel distribution based on ranked set sampling and simple random sampling. J. Math. Stat. Sci. 2016, 2016, 490–497. [Google Scholar]
- Hassan, N.M.; Rady, E.H.A.; Rashwan, N.I. Estimate the Parameters of the Gamma/Gompertz Distribution based on Different Sampling Schemes of Ordered Sets. J. Stat. Appl. Probab. 2022, 11, 899–914. [Google Scholar]
- Balakrishnan, N.; Li, T. Ordered ranked set samples and applications to inference. J. Stat. Plan. Inference 2008, 138, 3512–3524. [Google Scholar] [CrossRef]
- Stokes, S.L. Inferences on the correlation coefficient in bivariate normal populations from ranked set samples. J. Am. Stat. Assoc. 1980, 75, 989–995. [Google Scholar] [CrossRef]
- Chacko, M. Ordered extreme ranked set sampling and its application in parametric estimation. J. Stat. Theory Appl. 2016, 15, 248–258. [Google Scholar] [CrossRef]
- Eskandarzadeh, M.; Crescenzo, A.D.; Tahmasebi, S. Measures of information for maximum ranked set sampling with unequal samples. Commun. Stat.-Theory Methods 2018, 47, 4692–4709. [Google Scholar] [CrossRef]
- Basikhasteh, M.; Lak, F.; Tahmasebi, S. Ordered maximum ranked set sampling with unequal sample. Statistics 2020, 54, 856–870. [Google Scholar] [CrossRef]
- Biradar, B.S.; Santosha, C.D. Estimation of the mean of the exponential distribution using maximum ranked set sampling with unequal samples. Open J. Stat. 2014, 4, 641. [Google Scholar] [CrossRef]
- Lambert, J.H.; Li, D. Evaluating risk of extreme events for univariate-loss functions. J. Water Resour. Plan. Manag. 1994, 120, 382–399. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 2. [Google Scholar]
- Simiu, E.; Heckert, N.A.; Filliben, J.J.; Johnson, S.K. Extreme wind load estimates based on the Gumbel distribution of dynamic pressures: An assessment. Struct. Saf. 2001, 23, 221–229. [Google Scholar] [CrossRef]
- Kang, D.; Ko, K.; Huh, J. Determination of extreme wind values using the Gumbel distribution. Energy 2015, 86, 51–58. [Google Scholar] [CrossRef]
- Anderson, K.V.; Daniewicz, S.R. Statistical analysis of the influence of defects on fatigue life using a Gumbel distribution. Int. J. Fatigue 2018, 112, 78–83. [Google Scholar] [CrossRef]
- Dutta, S.; Sultana, F.; Kayal, S. Statistical inference for Gumbel type-II distribution under simple step-stress life test using type-II censoring. Iran. J. Sci. 2023, 47, 155–173. [Google Scholar] [CrossRef]
- Hussian, M.A. Bayesian and maximum likelihood estimation for Kumaraswamy distribution based on ranked set sampling. Am. J. Math. Stat. 2014, 4, 30–37. [Google Scholar]
- Sadek, A.; Sultan, K.S.; Balakrishnan, N. Bayesian estimation based on ranked set sampling using asymmetric loss function. Bull. Malays. Math. Sci. Soc. 2015, 38, 707–718. [Google Scholar] [CrossRef]
- Joukar, A.; Ramezani, M.; MirMostafaee, S.M.T.K. Parameter estimation for the exponential-Poisson distribution based on ranked set samples. Commun. Stat. Theory Methods 2021, 50, 560–581. [Google Scholar] [CrossRef]
- Pedroso, V.C.; Taconeli, C.A.; Giolo, S.R. Estimation based on ranked set sampling for the two-parameter Birnbaum–Saunders distribution. J. Stat. Comput. Simul. 2021, 91, 316–333. [Google Scholar] [CrossRef]
- Biradar, B.S. Parametric estimation of location and scale parameters based on ranked set sampling with unequal set sizes. Commun. Stat. Simul. Comput. 2022, 1–16. [Google Scholar] [CrossRef]
- Mahdi, S.; Cenac, M. Estimating Parameters of Gumbel Distribution using the Methods of Moments, probability weighted Moments and maximum likelihood. Rev. Matemática Teoría Apl. 2005, 12, 151–156. [Google Scholar] [CrossRef]
- Choi, B.J. Estimation for scale parameter of type-I extreme value distribution. J. Korean Data Inf. Sci. Soc. 2015, 26, 535–545. [Google Scholar] [CrossRef]
- Fayomi, A.; Hassan, A.S.; Baaqeel, H.; Almetwally, E.M. Bayesian Inference and Data Analysis of the Unit–Power Burr X Distribution. Axioms 2023, 12, 297. [Google Scholar] [CrossRef]
- Zayed, M.A.; Hassan, A.S.; Almetwally, E.M.; Aboalkhair, A.M.; Al-Nefaie, A.H.; Almongy, H.M. A Compound Class of Unit Burr XII Model: Theory, Estimation, Fuzzy, and Application. Sci. Program. 2023, 2023, 4509889. [Google Scholar] [CrossRef]
n | ||||||
---|---|---|---|---|---|---|
0.7 | ||||||
0.5 | 1 | |||||
2 | ||||||
0.7 | ||||||
1 | 1 | |||||
2 |
n | |||||
---|---|---|---|---|---|
0.7 | |||||
0.5 | 1 | ||||
2 | |||||
0.7 | |||||
1 | 1 | ||||
2 |
n | ||||||
---|---|---|---|---|---|---|
0.7 | ||||||
0.5 | 1 | |||||
2 | ||||||
0.7 | ||||||
1 | 1 | |||||
2 |
KSs | p-Value | ADs | p-Value | Ws | p-Value | |
---|---|---|---|---|---|---|
Dataset I | 0.52462 | 0.9343 | 0.2779 | 0.6311 | 0.0421 | 0.6322 |
Dataset II | 0.38101 | 0.4818 | 0.4542 | 0.2649 | 0.0561 | 0.4230 |
n | Measures | |||||
---|---|---|---|---|---|---|
Dataset I | ( ) | (0.7832, 0.4542) | (0.3848, 0.4559) | (0.3874, 0.3972) | (0.4560, 0.2137) | |
1.1499 | 0.5270 | 0.4154 | 0.2356 | |||
0.9304 | 0.5832 | 0.4805 | 0.4367 | |||
1.1499 | 0.5270 | 0.4154 | 0.2356 | |||
1.0724 | 0.7260 | 0.6445 | 0.4854 | |||
Dataset II | ( ) | (0.5002, 0.3973) | (0.2899, 0.3361) | (0.3091, 0.1852) | (0.6168, 0.2513) | |
0.2852 | 0.1644 | 0.1301 | 0.1074 | |||
0.3836 | 0.3029 | 0.2896 | 0.2796 | |||
0.2852 | 0.1644 | 0.1301 | 0.1074 | |||
0.5340 | 0.4055 | 0.3608 | 0.3277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, N.M.; Alamri, O.A. Estimation of Gumbel Distribution Based on Ordered Maximum Ranked Set Sampling with Unequal Samples. Axioms 2024, 13, 279. https://doi.org/10.3390/axioms13040279
Hassan NM, Alamri OA. Estimation of Gumbel Distribution Based on Ordered Maximum Ranked Set Sampling with Unequal Samples. Axioms. 2024; 13(4):279. https://doi.org/10.3390/axioms13040279
Chicago/Turabian StyleHassan, Nuran Medhat, and Osama Abdulaziz Alamri. 2024. "Estimation of Gumbel Distribution Based on Ordered Maximum Ranked Set Sampling with Unequal Samples" Axioms 13, no. 4: 279. https://doi.org/10.3390/axioms13040279
APA StyleHassan, N. M., & Alamri, O. A. (2024). Estimation of Gumbel Distribution Based on Ordered Maximum Ranked Set Sampling with Unequal Samples. Axioms, 13(4), 279. https://doi.org/10.3390/axioms13040279