Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Applications
5. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cramér, H. Sur un nouveau théorème-limite de la théorie des probabilités. Actualite’s Sci. Indust. 1938, 736, 5–23. [Google Scholar]
- Athreya, K.B. Large Deviation Rates for Branching Processes–I. Single Type Case. Ann. Appl. Probab. 1994, 4, 779–790. [Google Scholar] [CrossRef]
- Athreya, K.B.; Vidyashankar, A.N. Large Deviation Rates for Supercritical and Critical Branching Processes. In Classical and Modern Branching Processes; Springer: New York, NY, USA, 1997; pp. 1–18. [Google Scholar]
- Fleischmann, K.; Wachtel, V. Large deviations for sums indexed by the generations of a Galton-Watson process. Probab. Theory Relat. Fields 2008, 141, 445–470. [Google Scholar] [CrossRef]
- Ney, P.E.; Vidyashankar, A.N. Local limit theory and large deviations for supercritical branching processes. Ann. Appl. Probab. 2004, 14, 1135–1166. [Google Scholar] [CrossRef]
- He, H. On large deviation rates for sums associated with Galton–Watson processes. Adv. Appl. Probab. 2016, 48, 672–690. [Google Scholar] [CrossRef]
- Liu, J.N.; Zhang, M. Large deviation for supercritical branching processes with immigration. Acta Math. Sin. 2016, 32, 893–900. [Google Scholar] [CrossRef]
- Fan, X.Q. Sharp large deviation results for sums of bounded from above random variables. Sci. China Math. 2017, 60, 2465–2480. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, M. Harmonic moments and large deviations for supercritical branching processes with immigration. Front. Math. China 2017, 12, 1201–1220. [Google Scholar] [CrossRef]
- Li, L.L.; Li, J.P. Large deviation rates for supercritical branching processes with immigration. J. Theoret. Probab. 2021, 34, 162–172. [Google Scholar] [CrossRef]
- Jing, B.Y.; Shao, Q.M.; Wang, Q. Self-normalized Cramér-type large deviations for independent random variables. Ann. Probab. 2003, 31, 2167–2215. [Google Scholar] [CrossRef]
- Ney, P.E.; Vidyashankar, A.N. Harmonic moments and large deviation rates for supercritical branching processes. Ann. Appl. Probob. 2003, 12, 314–320. [Google Scholar] [CrossRef]
- Bercu, B.; Touati, A. Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probob. 2008, 18, 1848–1869. [Google Scholar] [CrossRef]
- Chen, H.T.; Zhang, Y. Moderate deviations for the total population arising from a nearly unstable sub-critical Galton-Watson process with immigration. Commun. Stat.-Theory Methods 2021, 50, 432–445. [Google Scholar] [CrossRef]
- Doukhan, P.; Fan, X.Q.; Gao, Z.Q. Cramér moderate deviations for a supercritical Galton-Watson process. Stat. Probabil. Lett. 2023, 192, 1–10. [Google Scholar] [CrossRef]
- Fan, X.Q.; Grama, I.; Liu, Q.S.; Shao, Q.M. Self-normalized Cramér type moderate deviations for martingales. Bernoulli 2019, 25, 2793–2823. [Google Scholar] [CrossRef]
- Fan, X.Q.; Shao, Q.M. Berry-Essseen bounds for self-normalized martingales. Comm. Math.-Statist. 2018, 6, 13–27. [Google Scholar] [CrossRef]
- Fan, X.Q.; Shao, Q.M. Self-normalized Cramér moderate deviation for a supercritical Galton-Watson process. Math. Appl. 2023, 60, 1281–1292. [Google Scholar] [CrossRef]
- Grama, I.; Liu, Q.S.; Pin, E. A Kesten–Stigum Type Theorem for A Supercritical Multitype Branching Process in A Random Environment. Ann. Appl. Probab. 2023, 33, 1013–1051. [Google Scholar] [CrossRef]
- Fleischmann, K.; Wachtel, V. Lower deviation probabilities for supercritical Galton-Watson processes. Ann. l’IHP Probab. Stat. 2007, 43, 233–255. [Google Scholar] [CrossRef]
- Peters, O.; Klein, W. Ergodicity Breaking in Geometric Brownian Motion. Phys. Rev. Lett. 2013, 110, 100603. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q. Limit theorems for a supercritical branching process with immigration in a random environment. Sci. China Math. 2017, 60, 2481–2502. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, Q.; Liu, Z. Quenched weighted moments of a supercritical branching process in a random environment. Asian J. Math. 2019, 23, 969–984. [Google Scholar] [CrossRef]
- Vinod, D.; Cherstvy, A.G.; Wang, W.; Metzler, R.; Sokolov, I.M. Nonergodicity of reset geometric Brownian motion. Phys. Rev. E. 2022, 105, L012106. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Peng, C. Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration. Axioms 2024, 13, 272. https://doi.org/10.3390/axioms13040272
Wang J, Peng C. Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration. Axioms. 2024; 13(4):272. https://doi.org/10.3390/axioms13040272
Chicago/Turabian StyleWang, Juan, and Chao Peng. 2024. "Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration" Axioms 13, no. 4: 272. https://doi.org/10.3390/axioms13040272
APA StyleWang, J., & Peng, C. (2024). Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration. Axioms, 13(4), 272. https://doi.org/10.3390/axioms13040272