Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Applications
5. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cramér, H. Sur un nouveau théorème-limite de la théorie des probabilités. Actualite’s Sci. Indust. 1938, 736, 5–23. [Google Scholar]
- Athreya, K.B. Large Deviation Rates for Branching Processes–I. Single Type Case. Ann. Appl. Probab. 1994, 4, 779–790. [Google Scholar] [CrossRef]
- Athreya, K.B.; Vidyashankar, A.N. Large Deviation Rates for Supercritical and Critical Branching Processes. In Classical and Modern Branching Processes; Springer: New York, NY, USA, 1997; pp. 1–18. [Google Scholar]
- Fleischmann, K.; Wachtel, V. Large deviations for sums indexed by the generations of a Galton-Watson process. Probab. Theory Relat. Fields 2008, 141, 445–470. [Google Scholar] [CrossRef]
- Ney, P.E.; Vidyashankar, A.N. Local limit theory and large deviations for supercritical branching processes. Ann. Appl. Probab. 2004, 14, 1135–1166. [Google Scholar] [CrossRef]
- He, H. On large deviation rates for sums associated with Galton–Watson processes. Adv. Appl. Probab. 2016, 48, 672–690. [Google Scholar] [CrossRef]
- Liu, J.N.; Zhang, M. Large deviation for supercritical branching processes with immigration. Acta Math. Sin. 2016, 32, 893–900. [Google Scholar] [CrossRef]
- Fan, X.Q. Sharp large deviation results for sums of bounded from above random variables. Sci. China Math. 2017, 60, 2465–2480. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, M. Harmonic moments and large deviations for supercritical branching processes with immigration. Front. Math. China 2017, 12, 1201–1220. [Google Scholar] [CrossRef]
- Li, L.L.; Li, J.P. Large deviation rates for supercritical branching processes with immigration. J. Theoret. Probab. 2021, 34, 162–172. [Google Scholar] [CrossRef]
- Jing, B.Y.; Shao, Q.M.; Wang, Q. Self-normalized Cramér-type large deviations for independent random variables. Ann. Probab. 2003, 31, 2167–2215. [Google Scholar] [CrossRef]
- Ney, P.E.; Vidyashankar, A.N. Harmonic moments and large deviation rates for supercritical branching processes. Ann. Appl. Probob. 2003, 12, 314–320. [Google Scholar] [CrossRef]
- Bercu, B.; Touati, A. Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probob. 2008, 18, 1848–1869. [Google Scholar] [CrossRef]
- Chen, H.T.; Zhang, Y. Moderate deviations for the total population arising from a nearly unstable sub-critical Galton-Watson process with immigration. Commun. Stat.-Theory Methods 2021, 50, 432–445. [Google Scholar] [CrossRef]
- Doukhan, P.; Fan, X.Q.; Gao, Z.Q. Cramér moderate deviations for a supercritical Galton-Watson process. Stat. Probabil. Lett. 2023, 192, 1–10. [Google Scholar] [CrossRef]
- Fan, X.Q.; Grama, I.; Liu, Q.S.; Shao, Q.M. Self-normalized Cramér type moderate deviations for martingales. Bernoulli 2019, 25, 2793–2823. [Google Scholar] [CrossRef]
- Fan, X.Q.; Shao, Q.M. Berry-Essseen bounds for self-normalized martingales. Comm. Math.-Statist. 2018, 6, 13–27. [Google Scholar] [CrossRef]
- Fan, X.Q.; Shao, Q.M. Self-normalized Cramér moderate deviation for a supercritical Galton-Watson process. Math. Appl. 2023, 60, 1281–1292. [Google Scholar] [CrossRef]
- Grama, I.; Liu, Q.S.; Pin, E. A Kesten–Stigum Type Theorem for A Supercritical Multitype Branching Process in A Random Environment. Ann. Appl. Probab. 2023, 33, 1013–1051. [Google Scholar] [CrossRef]
- Fleischmann, K.; Wachtel, V. Lower deviation probabilities for supercritical Galton-Watson processes. Ann. l’IHP Probab. Stat. 2007, 43, 233–255. [Google Scholar] [CrossRef]
- Peters, O.; Klein, W. Ergodicity Breaking in Geometric Brownian Motion. Phys. Rev. Lett. 2013, 110, 100603. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q. Limit theorems for a supercritical branching process with immigration in a random environment. Sci. China Math. 2017, 60, 2481–2502. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, Q.; Liu, Z. Quenched weighted moments of a supercritical branching process in a random environment. Asian J. Math. 2019, 23, 969–984. [Google Scholar] [CrossRef]
- Vinod, D.; Cherstvy, A.G.; Wang, W.; Metzler, R.; Sokolov, I.M. Nonergodicity of reset geometric Brownian motion. Phys. Rev. E. 2022, 105, L012106. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Peng, C. Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration. Axioms 2024, 13, 272. https://doi.org/10.3390/axioms13040272
Wang J, Peng C. Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration. Axioms. 2024; 13(4):272. https://doi.org/10.3390/axioms13040272
Chicago/Turabian StyleWang, Juan, and Chao Peng. 2024. "Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration" Axioms 13, no. 4: 272. https://doi.org/10.3390/axioms13040272
APA StyleWang, J., & Peng, C. (2024). Cramér Moderate Deviations for a Supercritical Galton–Watson Process with Immigration. Axioms, 13(4), 272. https://doi.org/10.3390/axioms13040272