A Singular Tempered Sub-Diffusion Fractional Equation with Changing-Sign Perturbation
Abstract
:1. Introduction
- (i)
- The existence of positive solutions for a sub-diffusion model with a changing-sign perturbation is derived under the cases in which the main nonlinearity f is superlinear or sublinear.
- (ii)
- Only the Carathéodory condition is required for the singular perturbation, which makes the disturbance influence to be significant so that the whole nonlinearity may tend to achieve negative infinity near some time singular points in .
- (iii)
- The main nonlinear term f and the negative perturbation g all involve a lower-order tempered fractional sub-diffusion term of unknown functions.
- (iv)
- The singular perturbation g is allowed to have infinitely many singular points in .
- (v)
- The asymptotic properties of positive solutions are studied.
2. Preliminaries and Lemmas
- (i)
- is Lebesgue measurable for every ;
- (ii)
- is continuous for a.e. ;
- (iii)
- for a.e. and any , there exists a function such that
- (G1) satisfies the Crathèodory condition, and we denote
- (G2) .
- (G3) There exists a subinterval such that
- (G4)
- (i)
- (ii)
- (1)
- For any , is a non-negative and continuous function;
- (2)
- For any
- (1)
- and or
- (2)
- and
3. Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zaky, M. Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Appl. Numer. Math. 2019, 145, 429–457. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations, in North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204, pp. 1–523. [Google Scholar]
- He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties. Bound. Value Probl. 2019, 2019, 112. [Google Scholar] [CrossRef]
- Ren, T.; Li, S.; Zhang, X.; Liu, L. Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes. Bound. Value Probl. 2017, 2017, 118. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Model. Anal. 2018, 23, 611–626. [Google Scholar]
- Zhang, X.; Xu, P.; Wu, Y.; Wiwatanapataphe, B. The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model. Nonlinear Anal. Model. Control 2022, 27, 28–444. [Google Scholar] [CrossRef]
- Baeumera, B.; Meerschaert, M.M. Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 2010, 233, 2438–2448. [Google Scholar] [CrossRef]
- Dehghan, M.; Abbaszadeh, M.; Deng, W. Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 2017, 73, 120–127. [Google Scholar] [CrossRef]
- Davenport, A.G. The spectrum of horizontal gustiness near the ground in high winds. Q. J. R. Meteorol. Soc. 1961, 87, 194–211. [Google Scholar] [CrossRef]
- Norton, D.J. Mobile offshore platform wind loads. In Proceedings of the 13th Offshore Technology Conference, Houston, TX, USA, 4 May 1981; Volume 4, pp. 77–88. [Google Scholar]
- Meerschaert, M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusions in heterogeneous systems. Geophys. Res. Lett. 2008, 35, 17403–17407. [Google Scholar] [CrossRef]
- Cartea, A.; Negrete, D. Fractional diffusion models of option prices in markets with jumps. Physica A 2007, 374, 749–763. [Google Scholar] [CrossRef]
- Mali, A.; Kucche, K.; Fernandez, A.; Fahad, H. On tempered fractional calculus with respect to functions and the associated fractional differential equations. Math. Methods Appl. Sci. 2022, 45, 11134–11157. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Bengochea, G. Bilateral tempered fractional derivatives. Symmetry 2021, 13, 823. [Google Scholar] [CrossRef]
- Madan, D.B.; Carr, P.P.; Chang, E.C. The variance Gamma process and option pricing. Rev. Financ. 1998, 2, 79–105. [Google Scholar] [CrossRef]
- Madan, D.B.; Milne, F. Option pricing with vg martingale components 1. Math. Financ. 1991, 1, 39–55. [Google Scholar] [CrossRef]
- Cartea, A.; del Castillo-Negrete, D. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 2007, 76, 041105. [Google Scholar] [CrossRef] [PubMed]
- Carr, P.; Geman, H.; Madan, D.B.; Yor, M. Stochastic Volatility for Lévy Processes. Math. Financ. 2003, 13, 345–382. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Tian, H.; Wu, Y. Upper and lower solution method for a singular tempered fractional equation with a p-Laplacian operator. Fractal Fract. 2023, 7, 522. [Google Scholar] [CrossRef]
- Saker, S.; Rezk, H.M.; Abohela, I.; Baleanu, D. Refinement multidimensional dynamic inequalities with general kernels and measures. J. Inequalities Appl. 2019, 2019, 306. [Google Scholar] [CrossRef]
- Zakarya, M.; Altanji, M.; AlNemer, G.; El-Hamid, H.A.; Cesarano, C.; Rezk, H.M. Fractional reverse coposn’s inequalities via conformable calculus on time scales. Symmetry 2021, 13, 542. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, 2018, 82. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Z.; Grafakos, L.; Wu, Y. Fractional Fourier transforms on Lp and applications. Appl. Comput. Harmon. Anal. 2021, 55, 71–96. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.; Liu, L.; Wu, Y. Extremal solutions for a class of tempered fractional turbulent flow equations in a porous medium. Math. Probl. Eng. 2020, 2020, 2492193. [Google Scholar] [CrossRef]
- Dong, B.; Fu, Z.; Xu, J. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann–Liouville fractional differential equations. Sci. China Math. 2018, 61, 1807–1824. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L.; Wang, G. Fractional Non-linear Regularity, Potential and Balayage. J. Geom. Anal. 2022, 32, 221. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, D.; Tian, H.; Wu, Y. Wiwatanapatapheec, B. An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation. Nonlinear Anal. Model. Control 2022, 27, 789–802. [Google Scholar]
- Guo, X.; Fu, Z. An initial and boundary value problem of fractional Jeffreys’ fluid in a porous half spaces. Comput. Math. Appl. 2019, 78, 1801–1810. [Google Scholar] [CrossRef]
- Shi, S. Some notes on supersolutions of fractional p-Laplace equation. J. Math. Anal. Appl. 2018, 463, 10521074. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L. Dual characterization of fractional capacity via solution of fractional p-Laplace equation. Math. Nachr. 2020, 293, 2233–2247. [Google Scholar] [CrossRef]
- Shi, S.; Zhai, Z.; Zhang, L. Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional p-Laplace and the fractional p-convexity. Adv. Calc. Var. 2024, 17, 195–207. [Google Scholar] [CrossRef]
- Tang, H.; Wang, G. Limiting weak type behavior for multilinear fractional integrals. Nonlinear Anal. 2020, 2020, 197. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Jiang, J.; Wu, Y.; Cui, Y. Positive solutions for a weakly singular Hadamard-type fractional differential equation with changing-sign nonlinearity. J. Funct. Spaces 2020, 2020, 5623589. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L.; Wang, G. Some new inequalities and extremal solutions of a Caputo-Fabrizio fractional Bagley-Torvik differential equation. Fractal Fract. 2022, 6, 488. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Jiang, J.; Wu, Y.; Cui, Y. Solutions for a singular Hadamard-type fractional differential equation by the spectral construct analysis. J. Funct. Spaces 2020, 2020, 8392397. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Jhang, S.; Kang, Q. Approximation theorems associated with multidimensional fractional fouried reansform and applications in Laplace and heat equations. Fractal. Fract. 2022, 6, 625. [Google Scholar] [CrossRef]
- Aris, R. Introduction to the Analysis of Chemical Reactors; Prentice Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Denk, A.; Topal, S. Existence of Three Positive Solutions of Semipositone Boundary Value Problems on Time Scales. Univers. J. Appl. Math. 2014, 2, 257–263. [Google Scholar] [CrossRef]
- Zhang, X.; Tain, H.; Wu, Y.; Wiwatanapataphee, B. Existence of positive solutions for third-order semipositone boundary value problems on time scales. Nonlinear Anal. Model. Control 2023, 28, 133–151. [Google Scholar] [CrossRef]
- Chang, D.; Duong, X.; Li, J.; Wang, W.; Wu, Q. An explicit formula of Cauchy-Szegö kernel for quaternionic Siegel upper half space and applications. Indiana Univ. Math. J. 2021, 70, 2451–2477. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Liu, S. Analyticity and existence of the Keller-Segel-Navier–Stokes equations in critical Besov spaces. Adv. Nonlinear Stud. 2018, 18, 517–535. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Sun, J. Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces. Sci. China Math. 2017, 60, 1837–1856. [Google Scholar] [CrossRef]
- Cao, J.; Chang, D.; Fu, Z.; Yang, D. Real interpolation of weighted tent spaces. Appl. Anal. 2016, 59, 2415–2443. [Google Scholar] [CrossRef]
- Chang, D.; Fu, Z.; Yang, D.; Yang, S. Real-variable characterizations of Musielak-Orlicz-Hardy spaces associated with Schrödinger operators on domains. Math. Methods Appl. Sci. 2016, 39, 533–569. [Google Scholar] [CrossRef]
- Chen, P.; Duong, X.; Li, J.; Wu, Q. Compactness of Riesz transform commutator on stratified Lie groups. J. Funct. Anal. 2019, 277, 1639–1676. [Google Scholar] [CrossRef]
- Shi, S.; Fu, Z.; Lu, S. On the compactness of commutators of Hardy operators. Pac. J. Math. 2020, 307, 239–256. [Google Scholar] [CrossRef]
- Duong, X.; Lacey, M.; Li, J.; Wick, B.; Wu, Q. Commutators of Cauchy-Szego type integrals for domains in Cn with minimal smoothness. Indiana Univ. Math. J. 2021, 70, 1505–1541. [Google Scholar] [CrossRef]
- Fu, Z.; Gong, S.; Lu, S.; Yuan, W. Weighted multilinear Hardy operators and commutators. Forum Math. 2015, 27, 2825–2852. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, Z. Riemann boundary value problem for harmonic functions in Clifford analysis. Math. Nachr. 2014, 287, 1001–1012. [Google Scholar]
- Wang, G.; Liu, Z.; Chen, L. Classification of solutions for an integral system with negative exponents. Complex Var. Elliptic Equ. 2019, 64, 204–222. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W. On strong indefinite Schrödinger equations with non-periodic potential. J. Appl. Anal. Comput. 2023, 13, 1–10. [Google Scholar]
- Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach. Electron. J. Differ. Equ. 2018, 147, 1–15. [Google Scholar]
- Yang, M.; Fu, Z.; Sun, J. Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. J. Differ. Equ. 2019, 266, 5867–5894. [Google Scholar] [CrossRef]
- Yang, S.; Chang, D.; Yang, D.; Fu, Z. Gradient estimates via rearrangements for solutions of some Schrödinger equations. Anal. Appl. 2018, 16, 339–361. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Wu, Y.; Wiwatanapataphee, B. A necessary and sufficient condition for the existence of entire large solutions to a k-Hessian system. Appl. Math. Lett. 2023, 145, 108745. [Google Scholar] [CrossRef]
- Zarzoso, V.; Hyvärinen, A. Iterative algorithms. In Handbook of Blind Source Separation; Academic Press: Cambridge, MA, USA, 2010; pp. 179–225. [Google Scholar]
- Zhang, X.; Jiang, J.; Wu, Y.; Wiwatanapataphee, B. Iterative properties of solution for a general singular n-Hessian equation with decreasing nonlinearity. Appl. Math. Lett. 2021, 112, 106826. [Google Scholar] [CrossRef]
- Guo, D.J.; Lakshmikantham, V. Nonlinear Problems in Abstract Cone; Academic Press Inc.: New York, NY, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, J.; Li, L.; Wu, Y. A Singular Tempered Sub-Diffusion Fractional Equation with Changing-Sign Perturbation. Axioms 2024, 13, 264. https://doi.org/10.3390/axioms13040264
Zhang X, Chen J, Li L, Wu Y. A Singular Tempered Sub-Diffusion Fractional Equation with Changing-Sign Perturbation. Axioms. 2024; 13(4):264. https://doi.org/10.3390/axioms13040264
Chicago/Turabian StyleZhang, Xinguang, Jingsong Chen, Lishuang Li, and Yonghong Wu. 2024. "A Singular Tempered Sub-Diffusion Fractional Equation with Changing-Sign Perturbation" Axioms 13, no. 4: 264. https://doi.org/10.3390/axioms13040264
APA StyleZhang, X., Chen, J., Li, L., & Wu, Y. (2024). A Singular Tempered Sub-Diffusion Fractional Equation with Changing-Sign Perturbation. Axioms, 13(4), 264. https://doi.org/10.3390/axioms13040264