Boundary Value Problems for the Perturbed Dirac Equation
Abstract
:1. Introduction
2. Preliminaries
2.1. Perturbed Dirac Operator
2.2. Fundamental Solutions for the Perturbed Dirac Operator
3. Cauchy-Type Integral Operator
4. A Generalized Riemann Problem for the Perturbed Dirac Equation
5. A Generalized Dirichlet Problem for the Perturbed Dirac Equation
6. The Mann Iterative Sequence of Operator
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bers, L. Theory of Pseudo-Analytic Functions. Institute of Mathematics and Mechanics. Ph.D. Thesis, New York University, New York, NY, USA, 1953. [Google Scholar]
- Vekua, I.N. Generalized Analytic Functions; Nauka: Moscow, Russia, 1959. [Google Scholar]
- Xu, Z. A function theory for the operator D-λ. Complex Var. 1991, 16, 27–42. [Google Scholar]
- Clifford, W.K. Applications of Grassmann’s extensive algebra. Am. J. Math. 1878, 1, 350–358. [Google Scholar] [CrossRef]
- Brackx, F.; Delanghe, R.; Sommen, F. Clifford Analysis; Res Notes Math; Pitman: London, UK, 1982. [Google Scholar]
- Delanghe, F.; Sommen, V. Soucek, V. Clifford Algebra and Spinor-Valued Functions; Kluwer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Huang, S.; Qiao, Y.; Wen, G. Real and Complex Clifford Analysis; Springer: New York, NY, USA, 2005. [Google Scholar]
- Chandragiri, S.; Shishkina, O.A. Generalised Bernoulli numbers and polynomials in the context of the Clifford analysis. J. Sib. Fed. Univ. Math. Phys. 2018, 11, 127–136. [Google Scholar]
- Obolashvili, E. Partially Differential Equations in Clifford Analysis; Pitman Monographs and Surveys in Pure and Applied Mathematics 96; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Obolashvili, E. Higher Order Partial Differential Equations in Clifford Analysis: Effective Solutions to Problems; Progess in Mathematieal Physies, 28; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Xu, Z. Helmholtz Equations and Boundary Value Problems: Research Notes in Mathematics; Pitman: Harlow, UK, 1992; Volume 262, pp. 204–214. [Google Scholar]
- Marius, M. Boundary value problems for Dirac operators and Maxwell’s equations in nonsmooth domains. Math. Methods Appl. Sci. 2002, 25, 1355–1369. [Google Scholar]
- Yuan, H. Boundary value problems for modified Dirac operators in Clifford analysis. Bound. Value Probl. 2015, 2015, 158. [Google Scholar] [CrossRef]
- Bell, W. Special Functions for Scientists and Engineers; Van Nostrand: London, UK, 1968. [Google Scholar]
- Gilbert, R.P.; Buchanan, J.L. First Order Elliptic Systems, A Function Theoretic Approach; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Liu, L. Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in banach spaces. J. Math. Anal. Appl. 1995, 194, 114–125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Shi, G.; Hu, X. Boundary Value Problems for the Perturbed Dirac Equation. Axioms 2024, 13, 238. https://doi.org/10.3390/axioms13040238
Yuan H, Shi G, Hu X. Boundary Value Problems for the Perturbed Dirac Equation. Axioms. 2024; 13(4):238. https://doi.org/10.3390/axioms13040238
Chicago/Turabian StyleYuan, Hongfen, Guohong Shi, and Xiushen Hu. 2024. "Boundary Value Problems for the Perturbed Dirac Equation" Axioms 13, no. 4: 238. https://doi.org/10.3390/axioms13040238
APA StyleYuan, H., Shi, G., & Hu, X. (2024). Boundary Value Problems for the Perturbed Dirac Equation. Axioms, 13(4), 238. https://doi.org/10.3390/axioms13040238