Translational Regular Variability and the Index Function
Abstract
:1. Introduction
- ;
- the function f defined by , , belongs to the class .
2. Main Results
- ;
- the function defined by is in the class .
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karamata, J. Über die Hardy-Littlewoodschen Umkehrungen des Abelschen Stetigkeitsätzes. Math. Z. 1930, 32, 319–320. [Google Scholar] [CrossRef]
- Karamata, J. Sur certains “Tauberian theorems” de G.H. Hardy et Littlewood. Mathematica 1930, 3, 33–48. [Google Scholar]
- Karamata, J. Sur un mode de croissance régulie‘re des fonctions. Mathematica 1930, 4, 38–53. [Google Scholar]
- Marić, V. Regular Variation and Differential Equations; Lecture Notes Math. 1725; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Řehák, P. Nonlinear Differential Equations in the Framework of Regular Variation; AMathNet: Brno, Czech Republic, 2014. [Google Scholar]
- Vítovec, J. Theory of rapid variation on time scales with applications to dynamic equations. Arch. Math. 2010, 46, 263–284. [Google Scholar]
- Matucci, S.; Řehák, P. Rapidly varying sequences and second-order difference equations. J. Differ. Eq. Appl. 2008, 14, 17–30. [Google Scholar] [CrossRef]
- Matucci, S.; Řehák, P. Rapidly varying decreasing solutions of half-linear difference equations. Math. Comput. Model. 2009, 49, 1692–1699. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Manojlović, J.V. On the existence and the asymptotic behavior of nonoscillatory solutions of second order quasilinear difference equations. Funkcial. Ekvac. 2013, 56, 81–109. [Google Scholar] [CrossRef]
- Geluk, J.H.; de Haan, L. Regular Variation, Extensions and Tauberian Theorems; CWI Tracts 40: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Korevaar, J. Tauberian Theory. A Century of Developments; Grundlehren der mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2004; Volume 329. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: New York, NY, USA, 1966; Volume 2. [Google Scholar]
- Jelenković, P.R.; Lazar, A.A. Asymptotic results for multiplexing subexponential on-off processes. Adv. Appl. Probab. 1999, 31, 394–421. [Google Scholar] [CrossRef]
- Mijajlović, Ž.; Pejović, N. Šegan, S.; Damljanović, G. On asymptotic solutions of Friedmann equations. Appl. Math. Comput. 2012, 219, 1273–1286. [Google Scholar]
- Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- de Haan, L. On Regular Variations and Its Applications to the Weak Convergence of Sample Extremes; Mathematical Centre Tracts 32: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Kočinac, L.D.R.; Djurčić, D.; Manojlović, J.V. Regular and Rapid Variations and Some Applications. In Mathematical Analysis and Applications: Selected Topics; Ruzhansky, M., Dutta, H., Agarwal, R.P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 414–474. [Google Scholar]
- Seneta, E. Regularly Varying Functions; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Bojanić, R.; Seneta, E. A unified theory of regularly varying sequences. Math. Z. 1973, 134, 91–106. [Google Scholar] [CrossRef]
- Galambos, J.; Seneta, E. Regularly varying sequences. Proc. Am. Math. Soc. 1973, 41, 110–116. [Google Scholar] [CrossRef]
- Djurčić, D.; Kočinac, L.D.R. On Theorems of Galambos–Bojanić-Seneta Type. In Advances in Mathematical Analysis and Its Applications; Hazarika, B., Acharjee, S., Srivastava, H.M., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 95–112. [Google Scholar]
- Weissman, I. A note on Bojanic-Seneta theory of regularly varying sequences. Math. Z. 1976, 151, 29–30. [Google Scholar] [CrossRef]
- Djurčić, D.; Fatić, D.; Elez, N. The index function operator for O-regularly varying functions. Kragujevac J. Math. 2023, 47, 1041–1046. [Google Scholar] [CrossRef]
- Fatić, D.; Djurčić, D. Classical Karamata theory of regular variability and the index function operator. In Analysis, Approximation, Optimization: Computation and Applications; Stanić, M., Albijanić, M., Djurčić, D., Spalević, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2024; to appear. [Google Scholar]
- Djurčić, D.; Kočinac, L.D.R.; Žižović, M.R. Classes of sequences of real numbers, games and selection properties. Topol. Appl. 2008, 156, 46–55. [Google Scholar] [CrossRef]
- Tasković, M. Fundamental facts on translationally O-regularly varying functions. Math. Moravica 2003, 7, 107–152. [Google Scholar] [CrossRef]
- Djurčić, D.; Kočinac, L.D.R.; Žižović, M.R. A few remarks on divergent sequences: Rates of divergence. J. Math. Anal. Appl. 2009, 360, 588–598. [Google Scholar] [CrossRef]
- Djurčić, D.; Kočinac, L.D.R.; Žižović, M.R. A few remarks on divergent sequences: Rates of divergence II. J. Math. Anal. Appl. 2010, 367, 705–709. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatić, D.; Djurčić, D.; Kočinac, L.D.R. Translational Regular Variability and the Index Function. Axioms 2024, 13, 189. https://doi.org/10.3390/axioms13030189
Fatić D, Djurčić D, Kočinac LDR. Translational Regular Variability and the Index Function. Axioms. 2024; 13(3):189. https://doi.org/10.3390/axioms13030189
Chicago/Turabian StyleFatić, Danica, Dragan Djurčić, and Ljubiša D. R. Kočinac. 2024. "Translational Regular Variability and the Index Function" Axioms 13, no. 3: 189. https://doi.org/10.3390/axioms13030189
APA StyleFatić, D., Djurčić, D., & Kočinac, L. D. R. (2024). Translational Regular Variability and the Index Function. Axioms, 13(3), 189. https://doi.org/10.3390/axioms13030189