Global Existence of Chemotaxis-Navier–Stokes System with Logistic Source on the Whole Space 2
Abstract
:1. Introduction
2. Preliminaries
- (i)
- , , and for any ,
- (ii)
- Moreover, for any ,and for any ,as well as
3. A Priori Estimates for a Regularized System
4. Proof of Theorem 1
- Existence.
- Uniqueness.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luca, M.; Chavez-Ross, A.; Edelstein-Keshet, L.; Mogilner, A. Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: Is there a connection? Bull. Math. Biol. 2003, 65, 693–730. [Google Scholar] [CrossRef] [PubMed]
- Painter, K.; Hillen, T. Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 2002, 10, 501–543. [Google Scholar]
- Tuval, I.; Cisneros, L.; Dombrowski, C.; Wolgemuth, C.; Kessler, J.; Goldstein, R. Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 2005, 102, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Yang, M. Global solutions to Keller-Segel-Navier–Stokes equations with a class of large initial data in critical Besov spaces. Math. Methods Appl. Sci. 2017, 40, 7425–7437. [Google Scholar] [CrossRef]
- Kozono, H.; Miura, M.; Sugiyama, Y. Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier–Stokes fluid. J. Funct. Anal. 2016, 270, 1663–1683. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y. Global weak solutions in a three-dimensional Keller-Segel-Navier–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 2017, 262, 5271–5305. [Google Scholar] [CrossRef]
- Tao, Y.; Winkler, M. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn.Syst. 2012, 32, 1901–1914. [Google Scholar] [CrossRef]
- Ren, G.; Liu, B. A new result for global solvability to a two-dimensional attraction-repulsion Navier–Stokes system with consumption of chemoattractant. J. Differ. Equ. 2022, 336, 126–166. [Google Scholar] [CrossRef]
- Xie, L.; Xu, Y. Global existence and stabilization in a two-dimensional chemotaxis-Navier–Stokes system with consumption and production of chemosignals. J. Differ. Equ. 2023, 354, 325–372. [Google Scholar] [CrossRef]
- Tao, M.Y. Winkler, Locally bounded global solutions in a three-dimensional Chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 2013, 30, 157–178. [Google Scholar] [CrossRef]
- Cao, X.; Lankeit, J. Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. 2016, 55, 1339–1401. [Google Scholar] [CrossRef]
- Lankeit, J. Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci. 2016, 26, 2071–2109. [Google Scholar] [CrossRef]
- Liu, J.; Lorz, A. A coupled chemotaxis-fluid model: Global existence. Ann. Inst. H. Poincaré Anal. Non Linéaire 2011, 28, 643–652. [Google Scholar] [CrossRef]
- Lorz, A. Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 2010, 20, 987–1004. [Google Scholar] [CrossRef]
- Lorz, A. A coupled Keller–Segel–Stokes model: Global existence for small initial data and blow-up delay. Commun. Math. Sci. 2012, 10, 555–574. [Google Scholar] [CrossRef]
- Winkler, M. Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Comm. Partial Differ. Equ. 2015, 54, 3789–3828. [Google Scholar] [CrossRef]
- Winkler, M. Global weak solutions in a three-dimensional Chemotaxis–Navier–Stokes system. Annales l’Institut Henri Poincaré (C) Non Linear Anal. 2015, 10, 555–574. [Google Scholar] [CrossRef]
- Winkler, M. Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial. Differ. Equ. 2012, 37, 319–351. [Google Scholar] [CrossRef]
- Winkler, M. Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 2014, 211, 455–487. [Google Scholar] [CrossRef]
- Winkler, M. How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. 2017, 369, 3067–3125. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Sun, J. Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. J. Differ. Equ. 2019, 266, 5867–5894. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, X. Global well-posedness for the two-dimensional incompressible Chemotaxis-Navier–Stokes equations. SIAM J. Math. Anal. 2014, 46, 3078–3105. [Google Scholar] [CrossRef]
- Stinner, C.; Tello, J.; Winkler, M. Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 2014, 68, 1607–1626. [Google Scholar] [CrossRef] [PubMed]
- Simon, J. Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 1987, 146, 65–96. [Google Scholar] [CrossRef]
- Duan, R.; Lorz, A.; Markowich, P. Global solutions to the coupled chemotaxis-fuid equations. Comm. Partial Differ. Equ. 2010, 35, 1635–1673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, Q.; Chen, Y.; Lei, Y.; Yang, M.
Global Existence of Chemotaxis-Navier–Stokes System with Logistic Source on the Whole Space
Xu Y, Liu Q, Chen Y, Lei Y, Yang M.
Global Existence of Chemotaxis-Navier–Stokes System with Logistic Source on the Whole Space
Xu, Yuting, Qianfan Liu, Yao Chen, Yang Lei, and Minghua Yang.
2024. "Global Existence of Chemotaxis-Navier–Stokes System with Logistic Source on the Whole Space
Xu, Y., Liu, Q., Chen, Y., Lei, Y., & Yang, M.
(2024). Global Existence of Chemotaxis-Navier–Stokes System with Logistic Source on the Whole Space