Fractional q-Calculus Operators Pertaining to the q-Analogue of
-Function and Its Application to Fractional q-Kinetic Equations
Abstract
:1. Introduction
2. Preliminaries
3. q-Analogue of -Function
4. Fractional q-Integration and q-Differentiation Approach
5. Generalized Fractional Kinetic Equation
5.1. Solution of Generalized Fractional q-Kinetic Equations by Using q-Laplace Transform
5.2. Alternative Solution of Generalized Fractional Kinetic Equations by Using the Sumudu Transform
6. Concluding Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, M.; Jain, R. A note on a generalized M-series as a special function of fractional calculus. Fract. Calc. Appl. Anal. 2009, 12, 449–452. [Google Scholar]
- Sharma, M. Fractional integration and fractional differentiation of the M-series. Fract. Calc. Appl. Anal. 2008, 11, 187–191. [Google Scholar]
- Mittag-Leffier, G.M. Sur la nouvelle function Eα (x), C. R. Acad. Sci. Paris Ser. II 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Uber den Fundamentalsatz in der Teorie der Funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Miller, K.S. The Mittag-Leffler and related functions. Integral Transform. Spec. Funct. 1993, 1, 41–49. [Google Scholar] [CrossRef]
- Saxena, R.K.; Ram, J.; Suthar, D.L. Fractional calculus of the generalized Mittag–Leffler functions. J. Indian Acad. Math. 2009, 31, 165–172. [Google Scholar]
- Purohit, S.D.; Suthar, D.L.; Kalla, S.L. Some results on fractional calculus operators associated with the M-function. Hadronic J. 2010, 33, 225–235. [Google Scholar]
- Mishra, V.N.; Suthar, D.L.; Purohit, S.D. Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function. Cogent Math. 2017, 4, 1320830. [Google Scholar] [CrossRef]
- Saigo, M.; Kilbas, A.A. On Mittag-Leffler type function and applications. Integral Transform. Spec. Funct. 1998, 7, 97–112. [Google Scholar] [CrossRef]
- Haubold, H.J.; Mathai, A.M. The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 2000, 327, 53–63. [Google Scholar] [CrossRef]
- Saxena, R.K.; Mathai, A.M.; Haubold, H.J. On fractional kinetic equations. Astrophys. Space Sci. 2002, 282, 281–287. [Google Scholar] [CrossRef]
- Saxena, R.K.; Mathai, A.M.; Haubold, H.J. Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. Space Sci. 2004, 290, 299–310. [Google Scholar] [CrossRef]
- Saxena, R.K.; Mathai, A.M.; Haubold, H.J. On generalized fractional kinetic equations. Physica A 2004, 34, 657–664. [Google Scholar] [CrossRef]
- Kumar, D.; Choi, J.; Srivastava, H.M. Solution of a general family of kinetic fractional equations associated with the generalized Mittag-Leffler function. Nonlinear Funct. Anal. Appl. 2018, 23, 455–471. [Google Scholar]
- Kumar, D.; Purohit, S.D.; Secer, A.; Atangana, A. On generalized fractional kinetic equations involving generalized Bessel function of the first kind. Math. Probl. Eng. 2015, 2015, 289387. [Google Scholar] [CrossRef]
- Suthar, D.L.; Purohit, S.D.; Araci, S. Solution of fractional kinetic equations associated with the (p,q)-Mathieu-type series. Discrete Dyn. Nat. Soc. 2020, 2020, 8645161. [Google Scholar] [CrossRef]
- Suthar, D.L.; Purohit, S.D.; Habenom, H.; Singh, J. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete Contin. Dyn. Syst. Ser. S 2021, 14, 3803–3819. [Google Scholar] [CrossRef]
- Habenom, H.; Suthar, D.L.; Gebeyehu, M. Application of Laplace transform on fractional kinetic equation pertaining to the generalized Galué type Struve function. Adv. Math. Phys. 2019, 2019, 5074039. [Google Scholar] [CrossRef]
- Khan, O.; Khan, N.; Baleanu, D.; Nisar, K.S. Computable solution of fractional kinetic equations using Mathieu-type series. Adv. Differ. Equ. 2019, 234, 13. [Google Scholar] [CrossRef]
- Gupta, A.; Parihar, C.L. On solutions of generalized kinetic equations of fractional order. Bol. Soc. Parana. Mat. 2014, 32, 183–191. [Google Scholar]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations. In With a Foreword by Mourad Ismail Lecture Notes in Math. 2056; Springer: Berlin/Heidelberg, Germany, 2012; p. 318. [Google Scholar]
- Kac, V.G.; Cheung, P. Quantum Calculus; Universitext Springer: New York, NY, USA, 2002; p. 112. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series. In With a Foreword by Richard Askey Encyclopedia Math. Appl. 35; Cambridge University Press: Cambridge, UK, 1990; p. 287. [Google Scholar]
- Abdi, W.H. On certain q-difference equations and q-Laplace transform. Proc. Nat. Inst. Sci. India Part A 1962, 28, 1–15. [Google Scholar]
- Al-Omari, S.K.Q.; Baleanu, D.; Purohit, S.D. Some results for Laplace-type integral operator in quantum calculus. Adv. Differ. Equ. 2018, 124, 10. [Google Scholar] [CrossRef]
- Albayrak, D.; Purohit, S.D.; Ucar, F. On q-analogues of Sumudu transform. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 2013, 21, 239–260. [Google Scholar] [CrossRef]
- Garg, M.; Chanchlani, L. On fractional q-kinetic equation. Mat. Bilten 2012, 36, 33–46. [Google Scholar] [CrossRef]
- Purohit, S.D.; Ucar, F. An application of q-Sumudu transform for fractional q -kinetic equation. Turk. J. Math. 2018, 42, 726–734. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 2007, 1, 311–323. [Google Scholar]
- Mansour, Z.S.I. Linear sequential q-difference equations of fractional order. Fract. Calc. Appl. Anal. 2009, 12, 159–178. [Google Scholar]
- Jain, A. Generalization of Mittag-Leffler function and its application in quantum-calculus. Int. J. Innov. Res. Technol. Manag. 2018, 2, 1–4. [Google Scholar]
- Purohit, S.D.; Kalla, S.L. A generalization of q-Mittag-Leffler function. Mat. Bilten 2011, 35, 15–26. [Google Scholar]
- Sharma, S.; Jain, R. On some recurrence relation of generalized q-Mittag-Leffler function. Math. Aeterna 2016, 6, 791–795. [Google Scholar]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Mansour, Z.S.I. Variational methods for fractional q-Sturm-Liouville problems. Bound. Value Probl. 2016, 150, 31. [Google Scholar] [CrossRef]
- Hahn, W. Beitrage Zur Theorie der Heineschen Reihen, die 24 Integrale der hypergeo-metrischen q-Differenzengleichung, das q-Analogon der Laplace Transformation. Math. Nachr. 1949, 2, 340–379. [Google Scholar] [CrossRef]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
- Saxena, R.K.; Saigo, M. Certain properties of fractional calculus operators associated with generalized Mittag-Leffler function. Fract. Calc. Appl. Anal. 2005, 8, 141–154. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimelis, B.; Suthar, D.L.; Kumar, D.
Fractional q-Calculus Operators Pertaining to the q-Analogue of
Shimelis B, Suthar DL, Kumar D.
Fractional q-Calculus Operators Pertaining to the q-Analogue of
Shimelis, Biniyam, Daya Lal Suthar, and Dinesh Kumar.
2024. "Fractional q-Calculus Operators Pertaining to the q-Analogue of
Shimelis, B., Suthar, D. L., & Kumar, D.
(2024). Fractional q-Calculus Operators Pertaining to the q-Analogue of