The Fourier–Legendre Series of Bessel Functions of the First Kind and the Summed Series Involving 1F2 Hypergeometric Functions That Arise from Them
Abstract
:1. Introduction
2. The Fourier–Legendre Series of a Bessel Function of the First Kind
3. A Numerical Check
4. Summing a Set of Infinite Series
5. Series Arising from the Fourier–Legendre Series
6. Series Arising from the Fourier–Legendre Series
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Appendix A
References
- Allen, E.E. Analytical approximations. Math. Tables Aids Comp. 1954, 8, 240–241, reproduced in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ed M. Abramowitz and I. A. Stegun (National Bureau of Standards, Applied mathematics series, 55, Washington, 1970), p. 369 No. 9.4.1. [Google Scholar] [CrossRef]
- Millane, R.P.; Eads, J.L. Polynomial Approximations to Bessel Functions. IEEE Trans. Antennas Propag. 1995, 51, 1398. [Google Scholar] [CrossRef]
- Gross, F.B. New Approximations to J0 and J1 Bessel Functions. IEEE Trans. Antennas Propag. 2003, 43, 904. [Google Scholar] [CrossRef]
- Maass, F.; Martin, P. Precise analytic approximations for the Bessel function J1. Results Phys. 2018, 8, 1234–1238. [Google Scholar] [CrossRef]
- Martín, P.; Guerrero, A.L. Fractional approximations to the Bessel function J0(x). J. Math. Phys. 1985, 26, 705–707. [Google Scholar] [CrossRef]
- Wimp, J. Polynomial Expansions of Bessel Functions and Some Associated Functions. Math. Comp. 1962, 16, 446–458. [Google Scholar] [CrossRef]
- Clenshaw, C.W. Mathematical Tables. In Chebyshev Series for Mathematical Functions; Department of Scientific and Industrial Research, Her Majesty’s Stationery Office: London, UK, 1962; Volume 5, pp. 30–35. [Google Scholar]
- Zhang, X. Comparisons of best approximations with Chebyshev expansions for functions with logarithmic endpoint singularities. Numer. Algorithms 2023, 94, 1–25. [Google Scholar] [CrossRef]
- Coleman, J.P.; Monaghan, A.J. Chebyshev Expansions for the Bessel Function Jn(z) in the Complex Plane. Math. Comput. 1983, 40, 343–366. [Google Scholar]
- Molinari, L.G. A Note on Trigonometric Approximations of Bessel Functions of the First Kind, and Trigonometric Power Sums. Fundam. J. Math. Appl. 2022, 5, 266–272. [Google Scholar] [CrossRef]
- Reiss, H.R. Effect of an intense electromagnetic filed on a weakly bound system. Phys. Rev. A 1980, 22, 1786. [Google Scholar] [CrossRef]
- Reiss, H.R. Theoretical methods in quantum optics: S-matrix and Keldysh techniques for stong-field process. Progress Quantum Electron. 1992, 16, 1. [Google Scholar] [CrossRef]
- Reiss, H.R. Relativistic strong-field photoionization. J. Opt. Soc. Am. B 1990, 7, 574–586. [Google Scholar] [CrossRef]
- Faisal, F.H.M. Multiple absorbtion of laser phtons by atoms. J. Phys. B 1973, 6, 4. [Google Scholar] [CrossRef]
- Reiss, H.R. Foundations of Strong-Field Physics. Lect. Ultrafast Intense Laser Sci. 2010, 1, 41–84. [Google Scholar]
- Reiss, H.R. Limits on Tunneling Theories of Strong-Field Ionization. Phys. Rev. Lett. 2008, 101, 043002. [Google Scholar] [CrossRef] [PubMed]
- Keating, C.M. Using Strong Laser Fields to Produce Antihydrogen Ions. Ph.D. Dissertation, Appendix D. Available online: https://pdxscholar.library.pdx.edu/open_access_etds/4519/ (accessed on 6 February 2024).
- Haber, H.E. The Spherical Harmonics. Available online: http://scipp.ucsc.edu/~{}haber/ph116C/SphericalHarmonics_12.pdf (accessed on 6 February 2024).
- Kellogg, O.D. Foundations of Potential Theory; Springer: Berlin, Germany, 1929; p. 132. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Springer: New York, NY, USA, 1966; p. 81. Available online: https://functions.wolfram.com/03.01.07.0005.01 (accessed on 6 February 2024).
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 5th ed.; Academic: New York, NY, USA, 1994; p. 987, No. 8.511.4. [Google Scholar]
- Joachain, C.J. Quantum Collision Theory; North-Holland: New York, NY, USA, 1983; p. 671, (B.46). [Google Scholar]
- Available online: http://functions.wolfram.com/03.21.06.0019.01 (accessed on 6 February 2024).
- Gröbner, W.; Hofreiter, N. Integraltafel Zweiter Teil Bestimmte Integrale; Springer: Berlin, Germany, 1961; p. 110, No. 332.14a. [Google Scholar]
- Available online: http://functions.wolfram.com/07.26.26.0001.01 (accessed on 6 February 2024).
- Castellanos, D.; Rosenthal, W.E. Rational Chebyshev Approximations of Analytic Functions. Available online: https://www.fq.math.ca/Scanned/31-3/castellanos.pdf (accessed on 6 February 2024).
- Amos, D.E. ALGORITHM 644: A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order. ACM Trans. Math. Softw. 1966, 12, 265–273. [Google Scholar] [CrossRef]
- Available online: https://fortran-lang.org/en/learn/best_practices/floating_point (accessed on 6 February 2024).
- Bohner, M.; Cuchta, T. The Bessel Difference Equation. Proc. Am. Math. Soc. 2017, 145, 1567–1580. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gorden and Breach: New York, NY, USA, 1986; Volume 3. [Google Scholar]
- Relation 5.2.6. Available online: https://dlmf.nist.gov/search/search?q=pochhammer&p=0&r=0 (accessed on 6 February 2024).
- Available online: http://functions.wolfram.com/06.10.02.0001.01 (accessed on 6 February 2024).
0.919730410089760239314421194080619970661964806513 |
0.998701439402686183101278177652801821334364120020 |
0.999990839756911599063652010604829164640891568430 |
0.999999963887689188843944699951660807338623340119 |
0.999999999909168357337955807722426205787682516277 |
0.999999999999841620300892054094280728854756176645 |
0.99999999999999979732605041136082528291421094660 |
0.999999999999999999801573588581204243621535893434 |
0.999999999999999999999846581786952424267000275450 |
0.999999999999999999999999903953851991585994488442 |
0.999999999999999999999999999950320420042897103088 |
0.999999999999999999999999999999978412290228685090 |
0.999999999999999999999999999999999992008312509362 |
0.999999999999999999999999999999999999997449396440 |
0.999999999999999999999999999999999999999999290955 |
0.999999999999999999999999999999999999999999999827 |
1.00000000000000000000000000000000000000000000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straton, J.C. The Fourier–Legendre Series of Bessel Functions of the First Kind and the Summed Series Involving 1F2 Hypergeometric Functions That Arise from Them. Axioms 2024, 13, 134. https://doi.org/10.3390/axioms13020134
Straton JC. The Fourier–Legendre Series of Bessel Functions of the First Kind and the Summed Series Involving 1F2 Hypergeometric Functions That Arise from Them. Axioms. 2024; 13(2):134. https://doi.org/10.3390/axioms13020134
Chicago/Turabian StyleStraton, Jack C. 2024. "The Fourier–Legendre Series of Bessel Functions of the First Kind and the Summed Series Involving 1F2 Hypergeometric Functions That Arise from Them" Axioms 13, no. 2: 134. https://doi.org/10.3390/axioms13020134
APA StyleStraton, J. C. (2024). The Fourier–Legendre Series of Bessel Functions of the First Kind and the Summed Series Involving 1F2 Hypergeometric Functions That Arise from Them. Axioms, 13(2), 134. https://doi.org/10.3390/axioms13020134