Study of Uniqueness and Ulam-Type Stability of Abstract Hadamard Fractional Differential Equations of Sobolev Type via Resolvent Operators
Abstract
:1. Introduction
2. Preliminaries
- (i)
- and for all
- (ii)
- and for all and
- (iii)
- For every and
3. Main Results
3.1. Uniqueness of the Solution
3.2. Stability
4. Particular Case
5. Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies 204; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Li, C.; Cai, M. Theory and Numerical Approximations of Fractional Integrals and Derivatives; SIAM: Philadelphia, PA, USA, 2020. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Method of Their Solutions and Some of Their Applications; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Abbas, S.; Benchohra, M.; Lazreg, J.E.; Zhou, Z. A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability. Chaos Soliton. Fract. 2017, 102, 47–71. [Google Scholar] [CrossRef]
- Balachandran, K.; Kiruthika, S. Existence of solutions of abstract fractional integrodifferential equations of Sobolev type. Comput. Math. Appl. 2012, 64, 3406–3413. [Google Scholar] [CrossRef]
- Balachandran, K.; Matar, M.; Annapoorani, N.; Prabu, D. Hadamard functional fractional integrals and derivatives and fractional differential equations. Filomat 2024, 38, 779–792. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef]
- Chinchane, V.L.; Pachpatte, D.B. A note on some integral inequalities via Hadamard integral. J. Fract. Calc. Appl. 2013, 4, 1–5. [Google Scholar]
- Houas, M.; Ould Melha, K. Existence and Uniqueness Results for a Coupled System of Hadamard Fractional Equations with Multi-Point Boundary Conditions. Facta Univ. NIS 2020, 35, 843–856. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. 2012, 142, 1–8. [Google Scholar] [CrossRef]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Abbas, S.; Benchohra, M.; Abdalla Darwish, M. Some existence and stability results for abstract fractional differential inclusions with not instantaneous impulses. Math. Rep. 2017, 19, 245–262. [Google Scholar]
- Li, C.; Li, Z. Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nonlinear Sci. 2021, 31, 1–60. [Google Scholar] [CrossRef]
- Chaudhary, R.; Reich, S. Extremal mild solutions to fractional delay integro-differential equations with non-instantaneous impulses. Appl. Anal. 2023, 102, 1975–1994. [Google Scholar] [CrossRef]
- Hernandez, E.; O’Regan, D. On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 2013, 141, 1641–1649. [Google Scholar] [CrossRef]
- Hernandez, E.; O’Regan, D.; Balachandran, K. On recent developments in the theory of abstract differential equations with fractional derivatives. Nonlinear Anal. 2010, 73, 3462–3471. [Google Scholar] [CrossRef]
- Hernandez, E.; O’Regan, D.; Balachandran, K. Existence results for abstract fractional differential equations with nonlocal conditions via resolvent operators. Indag. Math. 2013, 1, 68–82. [Google Scholar] [CrossRef]
- Kumar, P.; Pandey, D.N.; Bahuguna, D. On a New Class of Abstract Impulsive Function Differential Equation of Fractional Order. J. Nonlinear Sci. Appl. 2014, 7, 102–114. [Google Scholar] [CrossRef]
- Pierri, M.; O’Regan, D.; Rolnik, V. Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 2013, 219, 6743–6749. [Google Scholar] [CrossRef]
- Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Wang, G.; Pei, K.; Chen, Y.Q. Stability analysis of nonlinear Hadamard fractional differential system. J. Frankl. Inst. 2019, 356, 6538–6546. [Google Scholar] [CrossRef]
- He, B.B.; Zhou, H.C.; Kou, C.H. Stability analysis of Hadamard and Caputo-Hadamard fractional nonlinear systems without and with delay. Fract. Calc. Appl. Anal. 2022, 25, 2420–2445. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Existence and Ulam type stability for nonlinear Riemann-Liouville fractional differential equations with constant delay. Electron. J. Qual. Theory Differ. Equ. 2020, 67, 1–18. [Google Scholar] [CrossRef]
- Ali, A.; Mahariq, I.; Shah, K.; Abdeljawad, T.; Ali-Sheikh, B. Stability analysis of initial value problem of pantograph-type implicit fractional differential equations with impulsive conditions. Adv. Differ. Equ. 2021, 55, 1–17. [Google Scholar] [CrossRef]
- Al-Khateeb, A.; Zureigat, H.; Ala’yed, O.; Bawaneh, S. Ulam-Hyers stability and uniqueness for nonlinear sequential fractional differential equations involving integral boundary conditions. Fractal Fract. 2021, 5, 235. [Google Scholar] [CrossRef]
- Dai, Q.; Gao, R.; Li, Z.; Wang, C. Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a class of fractional differential equations. Adv. Differ. Equ. 2020, 2020, 103. [Google Scholar] [CrossRef]
- Houas, M. Sequential fractional pantograph differential equations with non local boundary conditions: Uniqueness and Ulam-Hyers-Rassias stability. Results Nonlinear Anal. 2022, 5, 29–41. [Google Scholar]
- Khan, A.; Khan, H.; Gomez-Aguilar, J.F.; Abdeljawad, T. Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel. Chaos Solitons Fractals 2019, 127, 422–427. [Google Scholar] [CrossRef]
- Murad, S.A.; Ameen, Z.A. Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives. AIMS Math. 2022, 7, 6404–6419. [Google Scholar] [CrossRef]
- Raj Aruldass, A.; Pachaiyappan, D.; Park, C. Hyers–Ulam stability of second-order differential equations using Mahgoub transform. Adv. Differ. Equ. 2021, 2021, 23. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Feckan, M. Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 2012, 64, 3389–3405. [Google Scholar] [CrossRef]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L. On weighted fractional inequalities using Hadamard fractional integral operator. Palest. J. Math. 2021, 10, 614–624. [Google Scholar]
- Ould Melha, K.; Chinchane, V.L. Continuous random variable with Hadamard fractional integral. Tamkang J. Math. 2019, 50, 103–109. [Google Scholar] [CrossRef]
- Lightbourne, J.H.; Rankin, S.M. A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 1983, 93, 328–337. [Google Scholar] [CrossRef]
- Hyers, D.H. On the stability of linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.M. Hyers-Ulam stability of linear differential equations of first order (II). Appl. Math. Lett. 2004, 17, 1135–1140. [Google Scholar] [CrossRef]
- Jung, S.M.; Rassias, T.M. Generalized Hyers-Ulam stability of Riccati differential equation. Math. Ineq. Appl. 2008, 11, 777–782. [Google Scholar] [CrossRef]
- Rus, I.A. Ulam Stability of ordinary differential equations. Stud. Univ. Babes Bolyai Math. 2009, 9, 125–133. [Google Scholar]
- Prüss, J. Evolutionary Integral Equations and Applications; Birkhäuser Verlag: Basel, Switzerland, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ould Melha, K.; Mohammed Djaouti, A.; Latif, M.A.; Chinchane, V.L. Study of Uniqueness and Ulam-Type Stability of Abstract Hadamard Fractional Differential Equations of Sobolev Type via Resolvent Operators. Axioms 2024, 13, 131. https://doi.org/10.3390/axioms13020131
Ould Melha K, Mohammed Djaouti A, Latif MA, Chinchane VL. Study of Uniqueness and Ulam-Type Stability of Abstract Hadamard Fractional Differential Equations of Sobolev Type via Resolvent Operators. Axioms. 2024; 13(2):131. https://doi.org/10.3390/axioms13020131
Chicago/Turabian StyleOuld Melha, Khellaf, Abdelhamid Mohammed Djaouti, Muhammad Amer Latif, and Vaijanath L. Chinchane. 2024. "Study of Uniqueness and Ulam-Type Stability of Abstract Hadamard Fractional Differential Equations of Sobolev Type via Resolvent Operators" Axioms 13, no. 2: 131. https://doi.org/10.3390/axioms13020131
APA StyleOuld Melha, K., Mohammed Djaouti, A., Latif, M. A., & Chinchane, V. L. (2024). Study of Uniqueness and Ulam-Type Stability of Abstract Hadamard Fractional Differential Equations of Sobolev Type via Resolvent Operators. Axioms, 13(2), 131. https://doi.org/10.3390/axioms13020131