Existence and Uniqueness of Second-Order Impulsive Delay Differential Systems
Abstract
:1. Introduction
2. Preliminaries
3. Representation of Solutions
4. Existence and Uniqueness of Solution to System (4)
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Elshenhab, A.M.; Wang, X.; Mofarreh, F.; Bazighifan, O. Exact solutions and finite time stability of linear conformable fractional systems with pure delay. CMES Comput. Model. Eng. Sci. 2023, 134, 927–940. [Google Scholar] [CrossRef]
- Liang, C.; Wang, J.; O’Regan, D. Representation of a solution for a fractional linear system with pure delay. Appl. Math. Lett. 2018, 77, 72–78. [Google Scholar] [CrossRef]
- Si, Y.; Wang, J. Relative controllability of multiagent systems with pairwise different delays in states. Nonlinear Anal. Model. Control 2022, 27, 289–307. [Google Scholar] [CrossRef]
- Yang, B.; Ma, W.; Zheng, Y. Practical exponential stability of hybrid impulsive stochastic functional differential systems with delayed impulses. Internat. J. Robust Nonlinear Control 2023, 33, 8336–8356. [Google Scholar] [CrossRef]
- Liao, C.; Tu, D.; Feng, Y.; Zhang, W.; Wang, Z.; Onasanya, B.O. A sandwich control system with dual stochastic impulses. IEEE/CAA J. Autom. Sin. 2022, 9, 741–744. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Q. Exponential stability of impulsive delayed linear differential equations. IEEE Trans. Circuits Syst. II: Express Briefs 2009, 56, 744–748. [Google Scholar]
- He, Z.; Li, C.; Cao, Z.; Li, H. Stability of nonlinear variable-time impulsive differential systems with delayed impulses. Nonlinear Anal. Hybrid Syst. 2021, 39, 100970. [Google Scholar] [CrossRef]
- Yeniçerioǧlu, A.F. Stability of linear impulsive neutral delay differential equations with constant coefficients. J. Math. Anal. Appl. 2019, 479, 2196–2213. [Google Scholar] [CrossRef]
- Chen, P.; Ma, W. The solution manifolds of impulsive differential equations. Appl. Math. Lett. 2021, 116, 107000. [Google Scholar] [CrossRef]
- Pervaiz, B.; Zada, A.; Popa, I.L.; Ben Moussa, S.; Kallekh, A. Exponential stability and relative controllability of first-order delayed integro-differential systems with impulses. Math. Methods Appl. Sci. 2024, 47, 7590–7615. [Google Scholar] [CrossRef]
- Pervaiz, B.; Zada, A. Existence results for the solution of abstract neutral impulsive differential problems with state-dependent delay. Qual. Theory Dyn. Syst. 2024, 23, 21. [Google Scholar] [CrossRef]
- Khusainov, D.Y.; Shuklin, G.V. Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Žilina Math. Ser. 2003, 17, 101–108. [Google Scholar]
- Khusainov, D.Y.; Diblík, J.; Růžičková, M.; Lukácova, J. Representation of a solution of the Cauchy problem for an oscillating system with pure delay. Nonlinear Oscil. 2008, 11, 276–285. [Google Scholar] [CrossRef]
- You, Z.; Wang, J. Stability of impulsive delay differential equations. J. Appl. Math. Comput. 2018, 56, 253–268. [Google Scholar] [CrossRef]
- Dibliík, J.; Fečkan, M.; Pospišil, M. Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 2013, 65, 64–76. [Google Scholar] [CrossRef]
- Shah, K.A.; Zada, A. Controllability and stability analysis of an oscillating system with two delays. Math. Methods Appl. Sci. 2021, 44, 14733–14765. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Q.; Li, G. Exact solutions of fractional oscillation systems with pure delay. Fract. Calc. Appl. Anal. 2022, 25, 1688–1712. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, M. Existence and Uniqueness of Second-Order Impulsive Delay Differential Systems. Axioms 2024, 13, 834. https://doi.org/10.3390/axioms13120834
Zhou Y, Li M. Existence and Uniqueness of Second-Order Impulsive Delay Differential Systems. Axioms. 2024; 13(12):834. https://doi.org/10.3390/axioms13120834
Chicago/Turabian StyleZhou, Yingxia, and Mengmeng Li. 2024. "Existence and Uniqueness of Second-Order Impulsive Delay Differential Systems" Axioms 13, no. 12: 834. https://doi.org/10.3390/axioms13120834
APA StyleZhou, Y., & Li, M. (2024). Existence and Uniqueness of Second-Order Impulsive Delay Differential Systems. Axioms, 13(12), 834. https://doi.org/10.3390/axioms13120834