Next Article in Journal
Strong Stability for a Viscoelastic Transmission Problem Under a Nonlocal Boundary Control
Previous Article in Journal
Fredholm Determinant and Wronskian Representations of the Solutions to the Schrödinger Equation with a KdV-Potential
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications

College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(10), 713; https://doi.org/10.3390/axioms13100713
Submission received: 12 September 2024 / Revised: 12 October 2024 / Accepted: 15 October 2024 / Published: 16 October 2024

Abstract

:
In this paper, we introduce the homogeneous grand mixed Herz–Morrey spaces M K ˙ q ˜ , λ α , p ) , θ ( R n ) and investigate their fundamental properties. We further explore the boundedness of sublinear operators and fractional-type operators on these spaces, establishing new results that contribute to the broader understanding of their applications.

1. Introduction

The concept of Morrey spaces, L p , λ ( R n ) , was introduced by Morrey in 1938 [1] to address regularity issues in the calculus of variations. These spaces provide a finer characterization of local regularity compared to classical Lebesgue spaces and have found extensive applications in both harmonic analysis and partial differential equations (PDEs). In 2005, Lu and Xu [2] extended the notion of Morrey spaces M p , λ ( R n ) by introducing the homogeneous Herz–Morrey spaces M K ˙ p , q α , λ ( R n ) , defined by the norm
f M K ˙ p , q α , λ ( R n ) = sup k 0 Z 2 k 0 λ k = k 0 2 k α p f χ k L q p 1 / p < .
In 1961, Benedek and Panzone [3] introduced the concept of mixed Lebesgue spaces L p ( R n ) for multi-index parameters p = ( p 1 , p 2 , , p n ) with 0 p < ( 0 p i < for all i). In recent years, mixed function spaces have gained renewed interest due to their applications in the study of PDEs, as demonstrated in [4]. Various mixed function spaces have been developed to further explore these applications, including the works in [5,6]. In 2019, Nogayama [7] introduced mixed Morrey spaces M q , λ ( R n ) , where 0 λ < , 0 q < , and q = ( q 1 , q 2 , , q n ) . Subsequently, in 2021, Wei [8] proposed the homogeneous mixed Herz spaces K ˙ q α , p ( R n ) and the homogeneous mixed Herz–Morrey spaces M K ˙ q , λ α , p ( R n ) for parameters α R , 0 λ < , and 0 p , q < . The boundedness of fractional integral operators in both local and global mixed Morrey spaces was also established in [9].
Since the introduction by Iwaniec and Sbordone in [10] for studying the integrability of the Jacobian, grand Lebesgue space has been extensively studied and generalizations have been obtained [11,12,13,14].
Grand mixed Herz–Morrey spaces are commonly used in harmonic analysis for studying singular integrals, Fourier analysis, and boundary value problems. These spaces provide a framework for analyzing functions with specific regularity properties and decay rates. The study of PDEs usually involves functions with certain regularity conditions. Grand mixed Herz–Morrey spaces provide optimal regularity conditions for functions involved in PDEs, which helps analyze solutions and establish the existence and uniqueness results. Motivated by the recent advancements above, this paper aims to extend these investigations to homogeneous grand mixed Herz–Morrey spaces. We specifically examine the boundedness of sublinear operators and fractional operators in these newly defined function spaces.
This paper is structured as follows: In Section 2, we define the homogeneous grand mixed Herz–Morrey spaces and explore some of their fundamental properties. In Section 3 and Section 4, we establish the boundedness criteria for sublinear operators and fractional-type operators in these spaces.

2. Preliminaries

There are several symbols used in this context. Let B k = { x R n : | x | 2 k } and A k = B k B k 1 for any k Z . Denote χ k = χ A k . Throughout this paper, let C ( λ 1 , λ 2 , , λ n ) denote positive constants only dependent on parameters λ 1 , λ 2 , , λ n . The letter q will denote n-tuples of numbers in the interval [ 0 , ] n for n N . For q = ( q 1 , q 2 , , q n ) ( 1 , ) n and s 0 , let
1 q = 1 q 1 , 1 q 2 , , 1 q n , q s = q 1 s , q 2 s , , q n s , q = q 1 , q 2 , , q n ,
where q j = q j q j 1 is the conjugate exponent of q j .
Definition 1 
([3]). Let p ( 0 , ) n . The mixed Lebesgue spaces L p R n are defined to be the set of all measurable functions f such that
f L p ( R n ) : = R R R f x 1 , x 2 , , x n p 1 d x 1 p 2 p 1 d x 2 p 3 p 2 d x n 1 p n < ,
For p j = , we replace the jth integral from inside to outside with an essential supremum. Take p 1 = as an example.
f L p ( R n ) : = R R R ess sup x 1 R f x 1 , x 2 , , x n p 2 d x 2 p 3 p 2 d x n 1 p n < ,
where
ess sup x R   f ( x ) : = inf α : { x R : f ( x ) > α } = 0 ,
and | E | denotes the Lebesgue measure of a measurable set E R .
For p ( 0 , ] n , L l o c p ( R n ) is the set consisted of all measurable functions such that for any compact set Q R n , f χ Q L p ( R n ) .
Definition 2 
([15]). Let 1 < p < and θ > 0 . The grand Lebesgue space L p ) , θ ( R n ) is defined as the space of measurable functions f on R n for which the following norm is finite:
f L p ) , θ ( R n ) = sup 0 < ε < p 1 ε θ R n | f ( x ) | p ε d x 1 p ε .
Definition 3 
([16]). Let α R , θ > 0 , 0 λ < and 1 < p , q . Homogeneous grand Herz–Morrey spaces M K ˙ q , λ α , p ) , θ R n are defined by
M K ˙ q , λ α , p ) , θ R n : = f L l o c q R n : f M K ˙ q , λ α , p ) , θ R n < ,
where
f M K ˙ q , λ α , p ) , θ R n = sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) .
Based on the above definitions, we present homogeneous grand mixed Herz–Morrey spaces M K ˙ q , λ α , p ) , θ R n .
Definition 4. 
Let α R , θ > 0 , 0 λ < and 1 < p , q . Homogeneous grand mixed Herz–Morrey spaces M K ˙ q , λ α , p ) , θ R n are defined by
M K ˙ q , λ α , p ) , θ R n : = f L l o c q R n : f M K ˙ q , λ α , p ) , θ R n < ,
where
f M K ˙ q , λ α , p ) , θ R n = sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) .
Remark 1. 
It is well known that L p ( R n ) = L p ( R n ) for p = ( p , p , , p ) . Therefore, it is obvious that M K ˙ q , λ α , p ) , θ ( R n ) = M K ˙ q , λ α , p ) , θ ( R n ) for q = ( q , q , , q ) .
The following definition is [17] (Definition 1.3.1).
Definition 5 
([17]). Let T be an operator defined on a linear space of real-valued measurable functions on R n and taking values in the set of real-valued finite almost everywhere measurable functions on R n . T is called sublinear if for all f, g in the domain of T and all λ∈ R , we have
| T ( f + g ) | | T ( f ) | + | T ( g ) | and | T ( λ f ) | = | λ | | T ( f ) | .
The following are some important lemmas used in the following text.
Lemma 1 
([17]). Let a k 0 and 0 < r 1 ; thus,
k = 1 a k r k = 1 a k r .
Lemma 2 
([9]). Let 1 < p < . Then, for f L p R n and g L p R n ,
R n f ( x ) g ( x ) d x f L p R n g L p R n .
Lemma 3 
([9]). Let 1 < p < . If f , g L p R n ,
f + g L p R n f L p R n + g L p R n .
Lemma 4 
([18]). For x j , y j 0 ( j N ) , 1 < p < and 1 p + 1 q = 1 ,
j = 1 x j y j j = 1 x j p 1 p j = 1 y j q 1 q .
Lemma 5 
([18]). For x j , y j 0 ( j N ) , 1 < p < ,
j = 1 ( x j + y j ) p 1 p j = 1 x j p 1 p + j = 1 y j p 1 p .
Proposition 1. 
If α R , θ > 0 , 0 λ < and 1 < p , q , homogeneous grand mixed Herz–Morrey spaces M K ˙ q , λ α , p ) , θ R n are Banach spaces.
Proof. 
We first prove that Definition 4 provides a norm. The non-negativity and homogeneity are evident. Therefore, the key aspect is to verify the Minkowski inequality. By Lemmas 3 and 5,
f + g M K ˙ q , λ α , p ) , θ R n = sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) ( f χ k + g χ k ) L q R n p ( 1 + ε ) 1 p ( 1 + ε ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n + g χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + ε θ k = k 0 2 k α p ( 1 + ε ) g χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) g χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) = f M K ˙ q , λ α , p ) , θ R n + g M K ˙ q , λ α , p ) , θ R n .
Thus, · M K ˙ q , λ α , p ) , θ R n is a norm.
Meanwhile, from the Minkowski inequality, for any N N and non-negative functions f 1 , f 2 , f N M K ˙ q , λ α , p ) , θ R n , it is easy to obtain
j = 1 N f j M K ˙ q , λ α , p ) , θ R n j = 1 N f j M K ˙ q , λ α , p ) , θ R n ;
therefore, for any N N and non-negative functions f 1 , f 2 , M K ˙ q , λ α , p ) , θ R n ,
j = 1 N f j M K ˙ q , λ α , p ) , θ R n j = 1 f j M K ˙ q , λ α , p ) , θ R n .
Then, via the monotone convergence theorem [19], for non-negative functions f 1 , f 2 , M K ˙ q , λ α , p ) , θ R n ,
j = 1 f j M K ˙ q , λ α , p ) , θ R n j = 1 f j M K ˙ q , λ α , p ) , θ R n .
Thus, the Minkowski inequality is extended to the case of infinite terms.
Now, we proceed to demonstrate the completeness of the spaces M K ˙ q , λ α , p ) , θ R n . Consider a Cauchy sequence f j j = 1 that satisfies
f j + 1 f j M K ˙ q , λ α , p ) , θ R n 2 j .
Let g ( x ) = | f 1 ( x ) | + j = 1 | f j + 1 ( x ) f j ( x ) | . By using the Minkowski inequality,
g M K ˙ q , λ α , p ) , θ R n = | f 1 | + j = 1 | f j + 1 f j | M K ˙ q , λ α , p ) , θ R n f 1 M K ˙ q , λ α , p ) , θ R n + j = 1 f j + 1 f j M K ˙ q , λ α , p ) , θ R n f 1 M K ˙ q , λ α , p ) , θ R n + 1 < ,
which implies that g M K ˙ q , λ α , p ) , θ R n . Therefore, for a.e. x R n , g ( x ) < . Then, f ( x ) = f 1 ( x ) + j = 1 f j + 1 ( x ) f j ( x ) exists almost everywhere. Since
f f k M K ˙ q , λ α , p ) , θ R n = f k + j = k f j + 1 f j f k M K ˙ q , λ α , p ) , θ R n j = k f j + 1 f j M K ˙ q , λ α , p ) , θ R n 2 1 k ,
then
lim j f f j M K ˙ q , λ α , p ) , θ R n = 0 ;
thus, f j j = 1 converges to f M K ˙ q , λ α , p ) , θ R n .
Thus, M K ˙ q , λ α , p ) , θ R n are Banach spaces. □
Proposition 2. 
Let α R , θ > 0 , 0 λ < and 1 < p , q . The following statements hold true:
(1) 
If p 1 p 2 , then M K ˙ q , λ α , p 1 ) , θ R n M K ˙ q , λ α , p 2 ) , θ R n .
(2) 
If α 1 α 2 , then M K ˙ q , λ α 1 , p ) , θ R n M K ˙ q , λ α 2 , p ) , θ R n .
Proof. 
(1) To begin with, with Lemma 1,
k = 1 a k r k = 1 a k r ( 0 < r 1 ) .
Therefore, for any f M K ˙ q , λ α , p 1 ) , θ R n , by p 1 p 2 ( 0 , 1 ] ,
f M K ˙ q , λ α , p 2 ) , θ R n = sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p 2 ( 1 + ε ) f χ k L q R n p 2 ( 1 + ε ) 1 p 2 ( 1 + ε ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α f χ k L q R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) f M K ˙ q , λ α , p 1 ) , θ R n < ,
and thus f M K ˙ q , λ α , p 2 ) , θ R n , which completes the proof.
(2) For any f M K ˙ q , λ α 1 , p ) , θ R n , by α 1 α 2 ,
f M K ˙ q , λ α 2 , p ) , θ R n = sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α 2 p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) = sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k ( α 2 α 1 ) p ( 1 + ε ) 2 k α 1 p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k 0 ( α 2 α 1 ) p ( 1 + ε ) 2 k α 1 p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) = 2 k 0 α 2 α 1 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α 1 p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) = 2 k 0 ( α 2 α 1 ) f M K ˙ q , λ α 1 , p ) , θ R n < ,
so f M K ˙ q , λ α 2 , p ) , θ R n , which completes the proof. □
Proposition 3. 
If α R , θ > 0 , 0 λ < and 1 < p i , q i ( i = 1 , 2 ) , with 1 p = 1 p 1 + 1 p 2 , 1 λ = 1 λ 1 + 1 λ 2 and 1 q = 1 q 1 + 1 q 2 . Thus, the following inequality holds:
f g M K ˙ q , λ α , p ) , θ R n f M K ˙ q 1 , λ 1 α , p 1 ) , θ R n g M K ˙ q 2 , λ 2 α , p 2 ) , θ R n .
Proof. 
By utilizing Lemmas 2 and 4,
f g M K ˙ q , λ α , p ) , θ R n = sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k g χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q 1 R n p ( 1 + ε ) g χ k L q 2 R n p ( 1 + ε ) 1 p ( 1 + ε ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p 1 ( 1 + ε ) f χ k L q 1 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) ε θ k = k 0 2 k α p 2 ( 1 + ε ) g χ k L q 2 R n p 2 ( 1 + ε ) 1 p 2 ( 1 + ε ) f M K ˙ q 1 , λ 1 α , p 1 ) , θ R n g M K ˙ q 2 , λ 2 α , p 2 ) , θ R n .

3. Boundedness of the Sublinear Operators in Homogeneous Grand Mixed Herz–Morrey Spaces

The following theorem describes the boundedness of a class of sublinear operators.
Theorem 1. 
Let θ > 0 , 0 λ < , 1 < p , q i < and i = 1 n 1 q i < α < n 1 1 n i = 1 n 1 q i . Let T be a sublinear operator satisfying the following conditions:
(i) 
T f L q R n C 0 f L q R n ;
(ii) 
For any k Z and function f with supp f A k and | x | 2 k + 1 ,
| T f ( x ) | C 1 f L 1 ( R n ) | x | n ;
(iii) 
For any k Z and function f with supp f A k and | x | 2 k 2 ,
| T f ( x ) | C 1 f L 1 ( R n ) 2 n k .
Thus, T is bounded on M K ˙ q , λ α , p ) , θ R n .
Proof. 
For 1 < p < , decompose
f ( x ) = l = f ( x ) χ l ( x ) : = l = f l ( x ) .
Since T is a sublinear operator, by Proposition 1, we have
T f M K ˙ q , λ α , p ) , θ R n = sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) ( T f ) χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = T f χ l χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k 2 T f χ l χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k 1 k + 1 T f χ l χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k + 2 T f χ l χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) = : E 1 + E 2 + E 3 .
To begin with, we make an estimation for E 2 , by Condition (i) and Proposition 1,
E 2 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k 1 k + 1 T f χ l L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k 1 k + 1 f χ l L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k 1 L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k + 1 L q R n p ( 1 + ε ) 1 p ( 1 + ε ) .
Replace k 1 and k + 1 in the first and third lines with new summation indices (still referred to as k), respectively; thus, we have
E 2 C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 1 2 ( k + 1 ) α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 + 1 2 ( k 1 ) α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 0 2 α sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 2 λ α sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 0 C ( λ , α ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 0 C ( λ , α ) f M K ˙ q , λ α , p ) , θ R n .
Next, we will estimate E 1 . To ensure that the function in the norm symbol is non-zero, we have x A k , which implies | x | 2 k 1 . Additionally, it is given that supp f χ l A k 2 for l ( , k 2 ] . Hence, according to Condition (ii), we can deduce that
| T f ( x ) | C 1 f L 1 ( R n ) | x | n C 1 C ( n ) f L 1 ( R n ) 2 n k .
By Lemmas 2 and 4 and the estimate χ Q L q R n | Q | 1 n i = 1 n 1 p i in [7], one has
E 1 C 1 C ( n ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k 2 2 k n f χ l L 1 R n p ( 1 + ε ) χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k 2 f χ l L 1 R n p ( 1 + ε ) 2 k n p ( 1 + ε ) 2 k n p ( 1 + ε ) 1 n i = 1 n 1 q i 1 p ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k 2 f χ l L q R n 2 ( k l ) n 1 n i = 1 n 1 q i 1 p ( 1 + ε ) 1 p ( 1 + ε ) = C 1 C ( n ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k 2 f χ l L q R n 2 ( k l ) n 1 n i = 1 n 1 q i 1 1 2 × 2 p ( 1 + ε ) 1 p ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k 2 f χ l L q R n p 2 ( k l ) n p 1 2 1 n i = 1 n 1 q i 1 ( 1 + ε ) × l = k 2 2 ( k l ) n p 1 2 1 n i = 1 n 1 q i 1 p ( 1 + ε ) p 1 p ( 1 + ε ) .
Since 1 < q i < , 1 n i = 1 n 1 q i 1 < 0 , by the formula of sum of the geometrical series,
l = k 2 2 ( k l ) n p 1 2 1 n i = 1 n 1 q i 1 p ( 1 + ε ) p = 1 1 2 n p 1 2 1 n i = 1 n 1 q i 1 2 n p 1 n i = 1 n 1 q i 1 p ( 1 + ε ) p = C ( n , p , q ) 1 + ε 2 n p ( 1 + ε ) 1 n i = 1 n 1 q i 1 ;
thus,
E 1 C 1 C ( n , p , q ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 l = k 2 2 k α p + n p 1 n i = 1 n 1 q i 1 f χ l L q R n p 2 ( k l ) n p 1 2 1 n i = 1 n 1 q i 1 ( 1 + ε ) 1 p ( 1 + ε ) .
By using the generalized Minkowski inequality (see [17] (Exercise 1.1.6)) to exchange the order of summation, and by the formula of sum of the geometrical series (the condition α < n 1 1 n i = 1 n 1 q i ensures the convergence; that is why we present it), one has
E 1 C 1 C ( n , p , q ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ 1 + ε l = k 0 2 k = l + 2 2 k α p + n p 1 n i = 1 n 1 q i 1 f χ l L q R n p 2 ( k l ) n p 1 2 1 n i = 1 n 1 q i 1 1 + ϵ 1 ( 1 + ε ) 1 p C 1 C ( n , p , q ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ l = k 0 2 2 l α p ( 1 + ε ) f χ l L q R n p ( 1 + ε ) k = l + 2 2 ( k l ) α p ( 1 + ε ) + n p ( 1 + ε ) 1 n i = 1 n 1 q i 1 1 p ( 1 + ε ) C 1 C ( n , p , q , α ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ l = k 0 2 2 l α p ( 1 + ε ) f χ l L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 1 C ( n , p , q , α ) f M K ˙ q , λ α , p ) , θ R n .
To estimate E 3 . According to supp f χ l A k + 2 and x A k , we can deduce that
| T f ( x ) | C 1 C ( n ) f L 1 ( R n ) 2 n k .
For i = 1 n 1 q i < α , by the Hölder inequality, one gets
E 3 C 1 C ( n ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k + 2 T f χ l χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) l = k + 2 2 ( k l ) i = 1 n 1 q i f χ l L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p l = k 2 f χ l L q R n 2 ( k l ) p i = 1 n 1 q i ( 1 + ε ) × l = k 2 2 ( k l ) p 1 2 i = 1 n 1 q i p ( 1 + ε ) p 1 p ( 1 + ε ) C 1 C ( n , p , q ) sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ l = k 0 2 l α p ( 1 + ε ) f χ l L q R n p ( 1 + ε ) k = l 2 2 ( k l ) p ( 1 + ε ) α + i = 1 n 1 q i 1 p ( 1 + ε ) C 1 C ( n , p , q , α ) f M K ˙ q , λ α , p ) , θ R n .
This proof is complete. □
The following corollary can be derived from Theorem 1.
Corollary 1. 
Let θ > 0 , 0 λ < , 1 < p , q and i = 1 n 1 q i < α < n 1 1 n i = 1 n 1 q i . Assuming a sublinear operator T satisfies
| T f ( x ) | C R n | f ( y ) | | x y | n d y
for f L 1 R n with compact support, x supp f , and T is bounded on L q R n , then T is bounded on M K ˙ q , λ α , p ) , θ R n .
Proof. 
We only need to verify Conditions (ii) and (iii).
For y A k and | x | 2 k + 1 , there holds | x | 2 | y | ; thus, | x y | | x | | y | | x | 2 , which implies that, for | x | 2 k + 1 and supp f A k ,
| T f ( x ) | C R n | f ( y ) | | x y | n d y 2 n C 1 | x | n A k | f ( y ) | d y 2 n C f L 1 ( R n ) | x | n .
Therefore, the operator T satisfies Condition (ii).
Meanwhile, for y A k and | x | 2 k 2 , there holds | y | 2 | x | ; thus, | x y | | y | | x | | y | 2 2 k 2 . Therefore, for | x | 2 k 2 and supp f A k ,
| T f ( x ) | C R n | f ( y ) | | x y | n d y 2 2 n C 1 2 n k A k | f ( y ) | d y 2 2 n C f L 1 ( R n ) 2 n k ,
which completes the proof. □

4. Boundedness of the Fractional Type Operators in Homogeneous Grand Mixed Herz–Morrey Spaces

The following theorem provides boundedness for another type of sublinear operator, which is also known as a fractional operator due to the denominator being fractional in Conditions (ii) and (iii).
Theorem 2. 
Let 0 < l < n , 0 λ < , 1 < p 1 p 2 , 1 < q 1 < 1 l , l = i = 1 n 1 q 1 i i = 1 n 1 q 2 i , where q 2 is another n-tuple that satisfies λ i = 1 n 1 q 2 i < α < n i = 1 n 1 q 1 i . Let I l be a sublinear operator satisfying the following conditions:
(i)
I l f L q 2 R n C 0 f L q 1 R n ;
(ii)
For any j Z and function f with supp f A j and | x | 2 j + 1 ,
I l f ( x ) C 1 f L 1 R n | x | n l ;
(iii)
For any j Z and function f with supp f A j and | x | 2 j + 1 ,
I l f ( x ) C 1 f L 1 R n 2 j ( n l ) .
Thus, I l is also bounded from M K ˙ q 1 , λ α , p 1 ) , θ R n to M K ˙ q 2 , λ α , p 2 ) , θ R n .
Proof. 
Since the proof for p 2 = is straightforward, we will focus on the case where 1 < p 2 < . Assuming f M K ˙ q 1 , λ α , p 1 ) , θ R n , decompose
f ( x ) = j = f ( x ) χ j ( x ) : = j = f j ( x ) ,
and I l f M K ˙ q 2 , λ α , p 2 ) , θ R n I l f M K ˙ q 2 , λ α , p 1 ) , θ R n is gained through Proposition 2.
Furthermore,
I l f M K ˙ q 2 , λ α , p 2 ) , θ R n sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 ( 1 + ε ) | I l f | χ k L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 ( 1 + ε ) j = k 2 I l ( f j ) χ k L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) + sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 ( 1 + ε ) j = k 1 k + 1 I l ( f j ) χ k L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) + sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 ( 1 + ε ) j = k + 2 I l ( f j ) χ k L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) = : J 1 + J 2 + J 3 .
For J 2 , I l is bounded from L q 1 R n to L q 2 R n ,
J 2 C 0 sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 j = k 1 k + 1 I l ( f j ) L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 0 sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 ( 1 + ε ) j = k 1 k + 1 f j L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 0 sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 ( 1 + ε ) f k 1 L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) + C 0 sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 ( 1 + ε ) f k L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) + C 0 sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 ( 1 + ε ) f k + 1 L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) = C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 1 2 ( k + 1 ) α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 + 1 2 ( k 1 ) α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 0 2 α sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) + C 0 2 λ α sup ε > 0 sup k 0 > 0 2 k 0 λ ε θ k = k 0 2 k α p ( 1 + ε ) f χ k L q R n p ( 1 + ε ) 1 p ( 1 + ε ) C 0 C ( λ , α ) sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 f j L q 1 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 0 C ( λ , α ) f M K ˙ q 1 , λ α , p 1 ) , θ R n .
Next, we consider J 1 , supp ( f χ l ) A k 2 , x A k ; thus, 2 k 1 | x | < 2 k through Condition (ii), as follows:
I l ( f χ j ) ( x ) C 1 f χ j L 1 R n | x | n l C 1 C ( n ) f χ j L 1 R n .
Thus, by the similar method to that in the proof of Theorem 1, one has
J 1 C 1 C ( n ) sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k α p 1 j = k 2 2 k ( n l ) f χ j L 1 R n χ k L q 2 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k ( α n + l ) + i = 1 n 1 q 2 i p 1 ( 1 + ε ) j = k 2 f χ j L 1 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 2 k ( α n + l ) + i = 1 n 1 q 2 i p 1 ( 1 + ε ) j = k 2 f χ j L q 1 R n χ j L q 1 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 Z 2 k 0 λ k = k 0 j = k 2 2 j α f χ j L q 1 R n 2 ( j k ) n i = 1 n 1 q 1 i α p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 Z 2 k 0 λ { k = k 0 ( j = k 2 2 j α f χ j L q R n 2 ( j k ) 1 2 n i = 1 n 1 q 1 i α × j = k 2 2 ( j k ) 1 2 n i = 1 n 1 q 1 i α ) p ( 1 + ε ) } 1 p 1 ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 Z 2 k 0 λ { k = k 0 j = k 2 2 j p 1 ( 1 + ε ) α f χ j L q R n p 1 ( 1 + ε ) 2 ( j k ) p 1 ( 1 + ε ) 2 n i = 1 n 1 q 1 i α × j = k 2 2 ( j k ) p 1 ( 1 + ε ) 2 n i = 1 n 1 q 1 i α p 1 p 1 } 1 p 1 ( 1 + ε ) C 1 C ( n , p , q , α ) sup ε > 0 sup k 0 Z 2 k 0 λ j = k 0 2 j α p 1 ( 1 + ε ) f j L q 1 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 1 C ( n , p , q , α ) f M K ˙ q 1 , λ α , p 1 ) , θ R n .
J 3 is similar to J 1 through Condition (iii), as follows:
| I l ( f χ j ) ( x ) | C 1 f χ j L 1 R n 2 j ( n l ) C 1 C ( n ) f χ j L q 1 R n .
Then, with the use of a similar method to that in the proof of Theorem 1,
J 3 C 1 C ( n ) sup ε > 0 sup k 0 Z 2 k 0 λ j = k 0 j = k + 2 2 j α f χ j L q 1 R n 2 ( k j ) i = 1 n 1 q 2 i + α p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 1 C ( n ) sup ε > 0 sup k 0 Z 2 k 0 λ { j = k 0 2 j α p 1 f χ j L q 1 R n p 1 ( 1 + ε ) 2 ( k j ) i = 1 n 1 q 2 i + α p 1 ( 1 + ε ) 2 × j = k + 2 2 ( k j ) i = 1 n 1 q 2 i + α p 1 ( 1 + ε ) 2 p 1 p 1 } 1 p 1 ( 1 + ε ) C 1 C ( n , p , q , α ) sup ε > 0 sup k 0 Z 2 k 0 λ j Z 2 j α p 1 ( 1 + ε ) f χ j L q 1 R n p 1 ( 1 + ε ) 1 p 1 ( 1 + ε ) C 1 C ( n , p , q , α ) f M K ˙ q 1 , λ α , p 1 ) , θ R n .
That is also why λ i = 1 n 1 q 2 i < α . Therefore,
I l f M K ˙ q 2 , λ α , p 2 ) , θ R n ( C 0 C ( λ , α ) + 2 C 1 C ( n , p , q , α ) ) f M K ˙ q 1 , λ α , p 1 ) , θ R n .
This completes the proof of the theorem. □

5. Conclusions

In this article, we define homogeneous grand mixed Herz–Morrey spaces and explore some of their fundamental properties. Furthermore, we obtain the boundedness of sublinear operators and fractional-type operators in homogeneous grand mixed Herz–Morrey spaces.

Author Contributions

All authors contributed equality and significantly to writing this paper. All authors read and approved the final version of this manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 12061069).

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Acknowledgments

All authors would like to express their thanks to the referees for their valuable advice regarding the previous versions of this paper.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Morrey, C.B. On The Solution of Quasi-Linear Elliptic Partial Differential Equation. Trans. Am. Math. Soc. 1938, 43, 126–166. [Google Scholar] [CrossRef]
  2. Lu, S.; Xu, L. Boundedness of rough singular integral operatorson the homogeneous Morrey-Herz spaces. Hokkaido Math. J. 2005, 34, 299–314. [Google Scholar] [CrossRef]
  3. Benedek, A.; Panzone, R. The space Lp with mixed norm. Duke Math. J. 1961, 28, 301–324. [Google Scholar] [CrossRef]
  4. Komori, Y. Notes on singular integrals on some inhomogeneous Herz spaces. Taiwan. J. Math. 2004, 8, 547–556. [Google Scholar] [CrossRef]
  5. Blozinski, A.P. Multivariate rearrangements and Banach function spaces with mixed norms. Trans. Amer. Math. 1981, 263, 149–167. [Google Scholar] [CrossRef]
  6. Carozza, M.; Sbordone, C. The distance to L in some function spaces and applications. Differ. Integr. Equat. 1997, 10, 599–607. [Google Scholar] [CrossRef]
  7. Nogayama, T. Mixed Morrey spaces. Positivity 2019, 23, 961–1000. [Google Scholar] [CrossRef]
  8. Wei, M.Q. A characterization of C M . O q via the commutator of Hardy-type operators on mixed Herz spaces. Appl Anal. 2022, 101, 5727–5742. [Google Scholar] [CrossRef]
  9. Zhang, H.; Zhou, J. The boundedness of fractional integral operators in local and global mixed Morrey-type spaces. Positivity 2022, 26, 1–26. [Google Scholar] [CrossRef]
  10. Iwaniec, T.; Sbordone, C. On the integrability of the Jacobian under minimal hypotheses. Arch. Rat. Mech. Anal. 1992, 119, 129–143. [Google Scholar] [CrossRef]
  11. Anatriello, G.; Fiorenza, A. Fully measurable grand Lebesgue spaces. J. Math. Anal. Appl. 2015, 422, 783–797. [Google Scholar] [CrossRef]
  12. Capone, C.; Fiorenza, C.A. On small Lebesgue spaces. J. Funct. Spaces Appl. 2005, 3, 73–89. [Google Scholar] [CrossRef]
  13. Capone, C.; Formica, M.; Giova, R. Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal. 2013, 85, 125–131. [Google Scholar] [CrossRef]
  14. Xu, B. Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Math. 2022, 7, 12123–12143. [Google Scholar] [CrossRef]
  15. Fiorenza, A.; Sbordone, C. Existence and uniqueness results for solutions of nonlinear equations with right hand side in L1. Studia Math. 1998, 127, 223–231. [Google Scholar] [CrossRef]
  16. Sultan, B.; Azmi, F.; Sultan, M.; Mehmood, M.; Mlaiki, N. Boundedness of Riesz potential operator on grand Herz-Morrey spaces. Axioms 2022, 11, 583. [Google Scholar] [CrossRef]
  17. Grafakos, L. Classical Fourier Analysis; Springer: Cham, Switzerland, 2008. [Google Scholar]
  18. Kreyszig, E. Introductory Functional Analysis with Applications; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
  19. Royden, H.; Fitzpatrick, P.M. Real Analysis; China Machine Press: Beijing, China, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Xia, X.; Zhou, J. Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications. Axioms 2024, 13, 713. https://doi.org/10.3390/axioms13100713

AMA Style

Xia X, Zhou J. Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications. Axioms. 2024; 13(10):713. https://doi.org/10.3390/axioms13100713

Chicago/Turabian Style

Xia, Xiaoxi, and Jiang Zhou. 2024. "Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications" Axioms 13, no. 10: 713. https://doi.org/10.3390/axioms13100713

APA Style

Xia, X., & Zhou, J. (2024). Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications. Axioms, 13(10), 713. https://doi.org/10.3390/axioms13100713

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop