Monotonicities of Quasi-Normed Orlicz Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- if and only if ;
- (ii)
- for all and all ;
- (iii)
- There exists such that for all .
- (i)
- Φ is even, continuous, convex and ;
- (ii)
- for all .
- (i)
- Φ is even, continuous and ;
- (ii)
- Φ is nondecreasing on and for all ;
- (iii)
- There exists such that for all .
- (i)
- If , and a.e., then and ;
- (ii)
- There exists a strictly positive (called a weak unit).
3. Main Results
- (i)
- If , then ;
- (ii)
- If , then .
- (i)
- is a bounded sequence;
- (ii)
- for any such that and , and , either or implies .
- (i)
- is lower locally uniformly monotone;
- (ii)
- is strictly monotone;
- (iii)
- Φ is strictly increasing on and Φ satisfies the -condition.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, J.W. Pathological Compact Convex Sets in Lp(0,1), 0 ≤ p < 1; The Altgeld Book; University of Illinois: Champaign, IL, USA, 1976. [Google Scholar]
- Roberts, J.W. A nonlocallv convex F-space with the Hahn-Banach approximation property. In Banach Spaces of Analytic Functions; Lecture Notes in Mathematics; Baker, J., Cleaver, C., Diestel, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1977; pp. 76–81. [Google Scholar]
- Davis, W.; Garling, D.J.H.; Tomczak-Jagermann, N. The complex convexity of quasi-normed linear spaces. J. Funct. Anal. 1984, 55, 110–150. [Google Scholar] [CrossRef]
- Lee, H.J. Complex convexity and monotonicity in quasi-Banach lattices. Isr. J. Math. 2007, 159, 57–91. [Google Scholar] [CrossRef]
- Albiac, F.; Kalton, N.J. Lipschitz structure of quasi-Banach spaces. Isr. J. Math. 2009, 170, 317–335. [Google Scholar] [CrossRef]
- Albiac, F. Nonlinear structure of some classical quasi-Banach spaces and F-spaces. J. Math. Anal. Appl. 2008, 340, 1312–1325. [Google Scholar] [CrossRef]
- Albiac, F.; Ansorena, J.L. Integration in quasi-Banach spaces and the fundamental theorem of calculus. J. Funct. Anal. 2013, 264, 2059–2076. [Google Scholar] [CrossRef]
- Cui, Y.; Hudzik, H.; Kaczmarek, R.; Kolwicz, P. Geometric properties of F-normed Orlicz spaces. Aequ. Math. 2019, 93, 311–343. [Google Scholar] [CrossRef]
- Bai, X.; Cui, Y.; Kończak, J. Monotonicities in Orlicz spaces equipped with Mazur-Orlicz F-norm. J. Funct. Space 2020, 2020, 8512636. [Google Scholar] [CrossRef]
- Chen, S. Geometry of Orlicz Spaces; Dissertationes Mathematicae: Warszawa, Polish, 1996. [Google Scholar]
- Aoki, T. Locally bounded linear topological spaces. Proc. Imp. Acad. 1942, 18, 588–594. [Google Scholar] [CrossRef]
- Rolewicz, S. Metric Linear Spaces, 2nd ed.; D. Reidel: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Köthe, G. Topological Vector Spaces I; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar]
- Kalton, N.J. Quasi-Banach spaces. In Handbook of the Geometry of Banach Spaces; Elsevier: Amsterdam, The Netherlands, 2003; Volume 2, pp. 1099–1130. [Google Scholar]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis (English Translation), 2nd ed.; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, D.; Cui, Y. Monotonicities of Quasi-Normed Orlicz Spaces. Axioms 2024, 13, 696. https://doi.org/10.3390/axioms13100696
Ji D, Cui Y. Monotonicities of Quasi-Normed Orlicz Spaces. Axioms. 2024; 13(10):696. https://doi.org/10.3390/axioms13100696
Chicago/Turabian StyleJi, Dong, and Yunan Cui. 2024. "Monotonicities of Quasi-Normed Orlicz Spaces" Axioms 13, no. 10: 696. https://doi.org/10.3390/axioms13100696
APA StyleJi, D., & Cui, Y. (2024). Monotonicities of Quasi-Normed Orlicz Spaces. Axioms, 13(10), 696. https://doi.org/10.3390/axioms13100696