Starlikeness and Convexity of Generalized Bessel-Maitland Function
Abstract
:1. Introduction
2. Relevant Lemmas
3. Main Results
- (ii)
- The function
- (iii)
- The function
- (iv)
- The function
- (v)
- The function
- (a)
- (b)
- (ii)
- The function .
- (iii)
- The function .
- (iv)
- The function .
- (v)
- The function .
- (a)
- (b)
- (ii)
- The function .
- (iii)
- The function .
- (iv)
- The function .
- (v)
- The function .
4. k-Uniformly Starlikeness and k-Uniform Convexity
- (a)
- (b)
- (ii)
- The function in .
- (iii)
- The function in .
- (iv)
- The function in .
- (v)
- The function in .
- (a)
- (b)
- (ii)
- The function in .
- (iii)
- The function in .
- (iv)
- The function in .
- (v)
- The function in .
5. Starlikeness and Convexity Associated with Exponential Function and Bernoulli Lemniscate
- (a)
- (b)
- (ii)
- The function in.
- (iii)
- The function in.
- (iv)
- The function in.
- (v)
- The function in.
- (a)
- (b)
- (ii)
- The function in.
- (iii)
- The function in.
- (iv)
- The function in.
- (v)
- The function in.
- (a)
- (b)
- (ii)
- The function in.
- (iii)
- The function in.
- (iv)
- The function in.
- (v)
- The function in.
- (a)
- (b)
- (ii)
- The function in.
- (iii)
- The function in.
- (iv)
- The function in.
- (v)
- The function in.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balasubramanian, R.; Ponnusamy, S.; Prabhakaran, D.J. Convexity of integral transforms and function spaces. Integral Transform. Spec. Funct. 2007, 18, 1–14. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 1990, 110, 333–342. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Rønning, F. Geometric properties for convolutions of hypergeometric functions and functions with the derivative in a halfplane. Integral Transform. Spec. Funct. 1999, 8, 121–138. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Singh, V.; Vasundhra, P. Starlikeness and convexity of an integral transform. Integral Transform. Spec. Funct. 2004, 15, 267–280. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for confluent hypergeometric functions. Complex Var. Theory Appl. 1998, 36, 73–97. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 2001, 31, 327–353. [Google Scholar] [CrossRef]
- Küstner, R. On the order of starlikeness of the shifted Gauss hypergeometric function. J. Math. Anal. Appl. 2007, 334, 1363–1385. [Google Scholar] [CrossRef]
- Ruscheweyh, S.; Singh, V. On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 1986, 113, 1–11. [Google Scholar] [CrossRef]
- Silverman, H. Starlike and convexity properties for hypergeometric functions. J. Math. Anal. Appl. 1993, 172, 574–581. [Google Scholar] [CrossRef]
- Hästö, P.; Ponnusamy, S.; Vuorinen, M. Starlikeness of the Gaussian hypergeometric functions. Complex Var. Elliptic Equ. 2010, 55, 173–184. [Google Scholar] [CrossRef]
- Obradović, M.; Ponnusamy, S. Univalency and convolution results associated with confluent hypergeometric functions. Houston J. Math. 2009, 35, 1313–1328. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function. J. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1962. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Pitman Research Notes in Mathematics Series; Chapman and Hall/CRC: Harlow, UK, 1994; Volume 301. [Google Scholar]
- Albayrak, D.; Dernek, A.; Dernek, N.; Ucar, F. New integral transform with generalized Bessel-Maitland function kernel and its applications. Math. Meth. Appl. Sci. 2021, 44, 1394–1408. [Google Scholar] [CrossRef]
- Zayed, H.M. On generalized Bessel-Maitland function. Adv. Differ. Equ. 2021, 2021, 432. [Google Scholar] [CrossRef]
- Thomas, D.K.; Tuneski, N.; Vasudevarao, A. Univalent Functions: A Primer; Walter de Gruyter GmbH and Co KG: Berlin, Germany, 2018; Volume 69. [Google Scholar]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Goodman, A.W. On uniformly convex functions. Ann. Pol. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–658. [Google Scholar]
- Rønning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Z. Nauk. Politech. Rzeszowskiej Mat. 1996, 19, 101–105. [Google Scholar]
- Gruszecki, L.; Lecko, A.; Murugusundaramoorthy, G.; Sivasubramanian, S. On a class of analytic functions related to Robertson formula involving crescent shaped domain and lemniscate of Bernoulli. Symmetry 2023, 15, 875. [Google Scholar] [CrossRef]
- Soni, A.; Bansal, D. Certain geometric properties of generalized Bessel-Maitland function. Stud. Univ. Babes-Bolyai Math. 2023, 68, 789–798. [Google Scholar] [CrossRef]
- Akin, G.; Eker, S.S. Geometric properties of the generalized Wright-Bessel functions. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2023, 50, 383–393. [Google Scholar]
- Din, M.U.; Raza, M.; Xin, Q.; Yalçin, S.; Malik, S.N. Close-to-Convexity of q-Bessel–Wright Functions. Mathematics 2022, 10, 3322. [Google Scholar] [CrossRef]
- Prajapat, J. Certain geometric properties of the Wright function. Integral Transform. Spec. Funct. 2015, 26, 203–212. [Google Scholar] [CrossRef]
- Ravichandran, V. On uniformly convex functions. Ganita 2002, 53, 117–124. [Google Scholar]
- Mehrez, K.; Das, S. Logarithmically completely monotonic functions related to the q-gamma function and its applications. Anal. Math. Phys. 2022, 12, 65. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, M.U.; Breaz, D.; Raza, M.; Cotîrlă, L.-I. Starlikeness and Convexity of Generalized Bessel-Maitland Function. Axioms 2024, 13, 691. https://doi.org/10.3390/axioms13100691
Nawaz MU, Breaz D, Raza M, Cotîrlă L-I. Starlikeness and Convexity of Generalized Bessel-Maitland Function. Axioms. 2024; 13(10):691. https://doi.org/10.3390/axioms13100691
Chicago/Turabian StyleNawaz, Muhammad Umar, Daniel Breaz, Mohsan Raza, and Luminiţa-Ioana Cotîrlă. 2024. "Starlikeness and Convexity of Generalized Bessel-Maitland Function" Axioms 13, no. 10: 691. https://doi.org/10.3390/axioms13100691
APA StyleNawaz, M. U., Breaz, D., Raza, M., & Cotîrlă, L. -I. (2024). Starlikeness and Convexity of Generalized Bessel-Maitland Function. Axioms, 13(10), 691. https://doi.org/10.3390/axioms13100691